Повреждение сосудистого эндотелия - пусковой механизм развития атеросклероза. Клиническое значение эндотелиальной дисфункции

Вальвачев А.А. Москва

Endothelium produces a wide range of biological active substances of the variable functional specter, including regulators of regional circulation. Endothelial dysfunction can initiate (or modulate) a number of pathological conditions (e.g. atherosclerosis, hypertension, stroke, myocardial infarction, etc.).

Исследования последних 10-15 лет существенно изменили представление о роли эндотелия сосудов в общем гомеостазе . Оказалось, что эндотелий синтезирует огромное количество биологически активных веществ (БАВ), играющих весьма важную роль во многих процессах в норме и в патологии (гемодинамике, гемостазе, иммунных реакциях, регенерации и др.). Наличие такой обширной эндокринной активности у эндотелия дало основание D. Antomuoci, L.A. Fitzpatrick (1996) назвать его эндокринным деревом.

В настоящем обзоре остановимся только на одном направлении функционирования эндотелия - его участии в формировании адекватного кровотока, что обеспечивается согласованием агрегатного состояния крови и тонуса (диаметра) сосудов.

Эндокринная активность эндотелия зависит от его функционального состояния, которое в значительной мере определяется поступающей информацией, им воспринимаемой. На эндотелии находятся многочисленные рецепторы к различным биологически активным веществам (БАВ), он воспринимает также давление и объем движущейся крови - так называемое напряжение сдвига, стимулирующее синтез противосвертывающих и сосудорасширяющих веществ . Поэтому чем больше давление и скорость движущейся крови (артерии), тем реже образуются тромбы.

Дисфункция эндотелия , наступающая при воздействии повреждающих агентов (механических, инфекционных, обменных, иммуннокомплексных и т.п.), резко меняет направление его эндокринной активности на противоположную: образуются вазоконстрикторы, коагулянты.

Биологически активные вещества, вырабатываемые эндотелием, действуют в основном паракринно (на соседние клетки) и аутокринно-паракринно (на эндотелий), но сосудистая стенка - структура динамичная. Ее эндотелий постоянно обновляется, отжившие фрагменты вместе с БАВ попадают в кровь, разносятся по всему организму и могут оказывать влияние на системный кровоток. Об активности эндотелия можно судить по содержанию его БАВ в крови.

Строение сосудистой стенки создает определенную закономерность в распределении факторов свертывания (вазоконстрикторов) и противосвертывания (вазодилататоров). Пока эндотелий цел, не поврежден, он синтезирует главным образом факторы противосвертывания, являющиеся также вазодилататорами. Эти биологически активные вещества препятствуют росту гладких мышц - стенки сосуда не утолщаются, диаметр его не меняется. Кроме того, эндотелий адсорбирует из плазмы крови многочисленные противосвертывающие вещества. Сочетание на эндотелии антикоагулянтов и вазодилататоров в физиологических условиях является основой для адекватного кровотока, особенно в сосудах микроциркуляции.

Повреждение эндотелия сосудов и обнажение субэндотелиальных слоев запускает реакции агрегации, свертывания, препятствующие кровопотере, вызывает спазм сосуда, который может быть очень сильным и не устраняется денервацией сосуда (И.В. Давыдовский, 1969). Прекращается образование антиагрегантов. При кратковременном действии повреждающих агентов эндотелий продолжает выполнять защитную функцию, препятствуя кровопотере. Но при продолжительном повреждении эндотелия, по мнению многих исследователей , эндотелий начинает играть ключевую роль в патогенезе ряда системных патологий (атеросклероз, гипертония, инсульты, инфаркты и др.). Это объясняется участием эндотелия в активизации ренин-ангиотензиновой и симпатической систем, переключением активности эндотелия на синтез оксидантов, вазоконстрикторов, агрегантов и тромбогенных факторов, а также уменьшением деактивации эндотелиальных биологически активных веществ из-за повреждения эндотелия некоторых сосудистых областей (в частности, в легких).

Итак, эндотелий может вырабатывать как факторы свертывания (вазоконстрикторы), так и противосвертывания (вазодилататоры).

Активность эндотелия в физиологических условиях. В физиологических условиях изнутри на сосудистой стенке преобладают антикоагулянты - их обилие и высокая активность обеспечивают надежность реакции.

Эндотелий создает гладкую поверхность, покрыт слизистой <дымкой> - гликокаликсом - гликопротеинами, обладающими антиадгезивными свойствами (препятствуют прилипанию тромбоцитов). Небольшой слой фибрина, покрывающий эндотелий, связывает тромбин. Заряд стенки сосуда положительный, что также препятствует сближению тромбоцитов (имеющих положительный заряд) с эндотелием. Однако основной причиной антикоагулянтной и вазодилататорной функции стенки сосудов является синтез эндотелием соответствующих биологически активных веществ.

Оксид азота. Большое значение в поддержании адекватного кровотока придается оксиду азота (NO), который синтезируется эндотелием и является сигнальной молекулой в сердечно-сосудистой системе - реакция сосудов определяется степенью образования NO . Оно происходит с участием NO-синтазы, превращающей a -аргинин в оксид азота (NO) - нестабильный гормон с периодом полураспада в несколько секунд. Существуют три изомера синтазы :

I - нейрональная (в нервных клетках);
II - индуцибельная (в макрофагах);
III - эндотелиальная (в эндотелии).

Механизм действия NO. NO является основным стимулятором образования цГМФ. Увеличивая количество цГМФ, он уменьшает содержание кальция в тромбоцитах и гладких мышцах. Ионы кальция - обязательные участники всех фаз гемостаза и сокращения мышц. ЦГМФ, активизируя цГМФ-зависимую протеиназу, создает условия для открытия многочисленных калиевых и кальциевых каналов. Особенно большую роль играют белки - К Са 2+ -каналы. Открытие этих каналов для калия приводит к расслаблению гладких мышц благодаря выходу калия и кальция из мышц при реполяризации (затухание биотока действия). Активирование каналов К Са 2+ , плотность которых на мембранах очень велика, является основным механизмом действия оксида азота . Поэтому конечный эффект NO - антиагрегирующий, противосвертывающий и вазодилататорный. NO предупреждает также рост и миграцию гладких мышц сосудов, тормозит выработку адгезивных молекул, препятствует развитию спазма в сосудах. Оксид азота выполняет функции нейромедиатора, транслятора нервных импульсов, участвует в механизмах памяти, обеспечивает бактерицидный эффект .

Основным стимулятором активности оксида азота является напряжение сдвига. Образование NO увеличивается также под действием ацетилхолина, кининов, серотонина, катехоламинов и др. При интактном эндотелии многие вазодилататоры (гистамин, брадикинин, ацетилхолин и др.) оказывают сосудорасширяющий эффект через оксид азота . Особенно сильно NO расширяет мозговые сосуды.

Если функции эндотелия нарушены, ацетилхолин вызывает либо ослабленную, либо извращенную реакцию. Поэтому реакция сосудов на ацетилхолин является показателем состояния эндотелия сосудов и используется в качестве теста его функционального состояния (О.В. Иванова и др., 1998).

Оксид азота легко окисляется, превращаясь в пероксинитрат - ONOO-. Этот очень активный окислительный радикал, способствующий окислению липидов низкой плотности (ЛПНП), оказывает цитоксическое и иммунногенное действия, повреждает ДНК, вызывает мутацию, подавляет функции ферментов (T. Nguyen, Brunson, 1992), может разрушать клеточные мембраны. Образуется пероксинитрат при стрессах, нарушениях липидного обмена, тяжелых травмах. Высокие дозы ONOO- усиливают повреждающие эффекты продуктов свободного радикального окисления . Снижение уровня оксида азота проходит под влиянием глюкокортикоидов, подавляющих активность синтазы оксида азота. Ангиотензин II является главным антагонистом NO, способствуя превращению оксида азота в пероксинитрат.

Следовательно, состояние эндотелия устанавливает соотношение между оксидом азота (антиагрегантом, антикоагулянтом, вазодилятатором) и пероксинитратом, увеличивающим уровень окислительного стресса, что приводит к тяжелым последствиям.

Простациклин. Большую роль в гемостазе и гемодинамике играет и другой мощный антикоагулянт - простациклин (простагладин Pgl 2). Он образуется из фосфолипидов. Под действием циклооксигеназы отщепляется арахидоновая кислота, которая затем превращается в простагландины (Pg 2 и РgН 2) - нестойкие соединения. Из них под действием фермента простациклин-синтетазы образуется простациклин. Последний, действуя на мембрану гладких мышц, включает месенджеры II типа - аденилатциклазу, увеличивающую в клетке содержание цАМФ, который снижает в них уровень Ca 2+ .

Таким образом, простациклин действует как антиагрегант, противосвертывающий фактор, причем механизм действия такой же, как и оксида азота: удаление ионов кальция из гладких мышц, что препятствует спазму сосудов, агрегации тромбоцитов и свертыванию крови. Простациклин и оксид азота нормализуют липидный обмен, предупреждая развитие атеросклероза, тормозят ростовый процесс.

Стимуляторами образования простациклина являются, как и для оксида азота, напряжение сдвига, кинины и в отличие от оксида азота - ангиотезин I.

Тромбомодулин. Эндотелий сосудов синтезирует одноцепочный гликопротеид - тромбомодулин, выполняющий функцию рецептора тромбина. Тромбомодулин определяет скорость и направление процесса гемостаза . Тромбин, присоединившись к тромбомодулину, приобретает новые качества: образует вместе с противосвертывающими протеинами С и S (кофактор протеина S) антиагрегантный и антитромботический комплекс, который препятствует свертыванию и тормозит фибринолиз.

Протеины С и S образуются в печени с участием витамина К (протеин S синтезируется также в эндотелии и в мегакариоцитах).

Итак, эндотелий сосудов посредством рецептора тромбомодулина блокирует самый активный фактор свертывания - тромбин.

Эндотелий в физиологическом состоянии инактивирует процессы свертывания еще и по другим механизмам. Одним из них является синтез антитромбина III (образуется также и в печени) -очень сильного активатора гепарина, адсорбируюшегося эндотелием из крови. Образуется гепарин в печени, легких, базофилами, тучными клетками. Сам эндотелий синтезирует гепариноподобные вещества.

Таким образом, в нормальных физиологических условиях эндотелий сосудов препятствует агрегации, коагуляции крови и спазмированию сосудов, синтезируя группу активных веществ: оксид азота, простациклин, антитромбин III и др. Кроме того, эндотелий, образуя тромбомодулин, блокирует активные коагулянты, выделяющиеся печенью и находящиеся в плазме крови (тромбин). И, наконец, эндотелий адсорбирует антикоагулянты из плазмы крови, препятствуя адгезии и агрегации тромбоцитов на своей поверхности (гепарин, протеины С и S).

Повреждение сосудистой стенки или нарушение функции эндотелия. Эндотелий при повреждении становится инициатором свертывания крови и сужения (спазма) сосудов. В норме это - защитная реакция, предохраняющая организм от потери крови. Но в других, патологических ситуациях данное направление активности эндотелия начинает или усугубляет патологический процесс.

Преобладание агрегантов (и вазоконстрикторов) объясняется следующими основными причинами. Во-первых, повреждение или нарушение функции эндотелия подавляет секрецию антиагрегирующих, противосвертывающих и сосудорасширяющих веществ; во-вторых, эндотелий в этих условиях секретирует очень активные агреганты, коагулянты и вазоконстрикторы.

Эндотелины - это группа полипептидов, состоящая из трех изомеров (эндотелин-1, эндотелин-2 и эндотелин-3), отличающихся некоторыми вариациями и последовательностью расположения аминокислот. Открытие эндотелинов в 1988 г. позволило объяснить ряд непонятных феноменов гемостаза в норме и патологии.

Эндотелий секретирует <большой> эндотелин <проэндотелин> (38 аминокислотных остатков). Под влиянием эндотелинпревращаюшего фермента, находящегося внутри и на поверхности эндотелия, из большого эндотелина образуются три изомера эндотелинов.

Эндотелины - бициклические полипептиды, состоящие из 21 аминокислотного остатка с двумя бисульфидными связями. Имеется большое сходство между структурой эндотелинов и некоторыми нейротоксическими пептидами (яды скорпиона, роющей змеи).

При паракринно-аутокринном действии (т.е. на эндотелий) в ответ на вазоконстрикторы эндотелий вырабатывает антиагреганты, вазодилататоры (NO, простациклин) и натриуретический пептид.

Основной механизм действия эндотелинов заключается в высвобождении кальция, что вызывает:

1) стимуляцию всех фаз гемостаза, начиная с агрегации тромбоцитов и заканчивая образованием красного тромба;

2) сокращение и рост гладких мышц сосудов, приводящие к утолщению стенки сосудов и уменьшению их диаметра - вазоконстрикции.

Синтез эндотелинов усиливают тромбин (активизирующий эндотелинпревращающий фермент) и тромбоциты. Эндотелины, в свою очередь, вызывают адгезию и агрегацию тромбоцитов.

Эффекты эндотелинов неоднозначны и определяются рядом причин. Наиболее активен изомер - эндотелин-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин., в плазме крови - 4-7 мин. Легкие удаляют до 90% эндотелинов. Эндотелин-1 причастен к ряду патологических процессов (инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертонии, атеросклерозу и др.).

Эффекты эндотелинов определяются и свойствами рецепторов, с которыми эндотелины соединяются. Связываясь с эндотелин А-рецепторами, они тормозят синтез NO в сосудах и вызывают сужение сосудов; присоединившись к рецепторам В-1, вызывают расширение сосудов (тормозится образование цАМФ и усиливается синтез NO).

Имеет значение и доза эндотелинов: в физиологических условиях эндотелины тоже образуются, но в небольшом количестве. Реагируя с В-1-рецепторами, они расширяют сосуды. Однако поврежденный эндотелий синтезирует большое количество эндотелинов, вызывающих вазоконстрикцию. Большие дозы эндотелинов, введенные добровольцам , приводят к значительным изменениям системной гемодинамики: снижению ЧСС и ударного объема сердца, увеличению на 50% сосудистого сопротивления в большом круге кровообращения и на 130% в малом.

При велоэргометрической нагрузке у спортсменов в крови очень быстро повышалось содержание эндотелина-3 с одновременным возрастанием уровня норадреналина (S. Moeda et al., 1997). Считают, что выделение эндотелинов в данном случае имеет нейрогенную природу.

Специфично действие эндотелинов в различных сосудистых областях. В легких они разрушаются, но при легочной гипертензии в крови легких уровень этих веществ повышается в 2-3 раза . Много эндотелинов образуется в почках. Полагают, что эндотелины причастны к развитию почечной гипертензии. При инсультах их уровень повышается и в спинномозговой жидкости.

Ренин-ангиотензиновая система. Эндотелий сосудов участвует в формировании очень активной агрегирующей и вазоконстрикторной системы - ангиотензиновой. Активной формой этой системы является ангиотезин-II - октапептид, вызывающий генерализованную и очень сильную (в 50 раз сильнее адреналина) реакцию (В.Ф. Мордвин и соавт., 2001). Полупериод жизни ангиотензина-II - 10-12 мин.

Механизм образования ангиотензина II. Исходным веществом для синтеза ангиотензина II служит ангиотензиноген (?2-глобулин), образующийся в печени. Ренин, синтезируясь в юкстагломерулярном аппарате почек, превращает ангиотензиноген в малоактивное вещество - ангиотензин I.

Выделение ренина стимулируется местными (нарушение кровообращения в почках, гипоксия почек) и системными факторами (уменьшение объема циркулирующей крови и воды в организме, снижение артериального давления).

Ангиотензин I преобразуется в активное вещество - ангиотензин II под влиянием ангиотензинпревращающего фермента (АПФ), вырабатывающегося в основном эндотелием сосудов. Особенно много АПФ синтезируется в легких, где имеется богатая сосудистая сеть.

Поскольку ингибиторы АПФ не приводят к полной блокаде ангиотензина II, то считают (Ю.В. Белоусов, 2001), что имеются и другие пути превращения ангиотензина I в ангиотензин II.

Между ренин-ангиотензиновой системой и симпатоадреналовой (САС) существуют многоуровневые положительные связи (Ж.Д. Ковалева, 2001): ангеотензин II активирует САС, облегчает высвобождение норадреналина, а САС, в свою очередь стимулирует образование ренина почками.

Воздействия ангиотензина II на органы осуществляются через специфические рецепторы двух типов, имеющихся во многих органах. Спектр влияний ангиотензина очень широк.

Совместно с САС ангиотензин II вызывает:

Повышение сосудистого тонуса (сокращение гладких мышц сосудов);

Увеличение объема циркулирующей крови, что происходит благодаря активизации выделения альдостерона (увеличивающего реабсорбцию натрия) и усилению секреции АДГ (задерживающего воду в организме);

Положительные тропные влияния на миокард, приводящие к увеличению минутного объема сердца ;

Повышение уровня ингибитора тканевого активатора плазминогена (М.Я. Коган-Пономарев, А. Д. Добровольский, 1996).

В итоге под действием ангиотензина II повышается артериальное давление.

При значительных нарушениях функции и структуры эндотелия происходит резкая активизация ренин-ангиотензиновой системы, что делает её повреждающим агентом . Это направление действия ренин-ангиотензиновой системы усугубляется тесным взаимодействием ангиотензина II с САС - создается порочный круг: чем выше активность одной системы, тем выше, соответственно, и другой.

В больших дозах ангиотензин II способствует возникновению окислительного (оксидантного) стресса, так как, во-первых, угнетает инактивацию норадреналина легкими; во-вторых, увеличивает активность НАД- и НАДФ-зависимой оксидазы и превращает оксид азота в супероксид азота - один из основных окислителей ЛПНП; в-третьих, уменьшает синтез NO, разрушая брадикинин, сильный стимулятор образования NO; в-четвертых, стимулирует окисление ЛПНП макрофагами.

Таким образом, ангиотензин II, связывая между собой многие факторы, воздействующие на тонус сосудов (ренин-ангиотензино-вую, кининовую, симпатическую нервную систему, альдостерон и др.), становится центральным звеном регуляции артериального давления. Поэтому, с современной точки зрения, считается целесообразным при лечении больных артериальной гипертензией, недостаточностью кровообращения и профилактике острого инфаркта применение ингибиторов АПФ и блокаторов рецепторов ангеотензина II.

Кроме перечисленных выше биологически активных веществ, эндотелий вырабатывает еще большое число вазоактивных факторов, участвующих в гемостазе.

Важная роль отводится фибронектину - гликопротеиду, состоящему из двух цепей, соединенных дисульфидными связями. Вырабатывается он всеми клетками сосудистой стенки, тромбоцитами. Фибронектин является рецептором для фибрин-стабилизирующего фактора. Способствует адгезии тромбоцитов, участвуя в образовании белого тромба; связывает гепарин. Присоединяясь к фибрину, фибронектин уплотняет тромб. Под действием фибронектина клетки гладких мышц, эпителиоцитов, фибробластов повышают свою чувствительность к факторам роста, что может вызвать утолщение мышечной стенки сосудов (сужение диаметра).

Фактор Виллебранда (VIII - vWF) - синтезируется в эндотелии и мегакариоцитах; сульфитированный гликопротеид с большим молекулярным весом (1000 цД); стимулирует начало тромбообразования: способствует прикреплению рецепторов тромбоцитов к коллагену и фибронектину сосудов, а также друг другу, т.е. усиливает адгезию и агрегацию тромбоцитов. Синтез и выделение ф. Виллебранда возрастает под влиянием вазопрессина, при повреждении эндотелия. Поскольку все стрессорные состояния увеличивают выделение вазопрессина, то при стрессах, экстремальных состояниях тромбогенность сосудов возрастает, чему способствует повышение синтеза ф. Виллебранда.

VIII-vWF является также носителем ф. VIII - антигемофильного глобулина А, белка с меньшим молекулярным весом (200 кД). Ф.VIII вырабатывается в печени и макрофагами и участвует в процессе внутреннего каскада фибринообразования.

Ф. Виллебранда у здоровых людей предотвращает рост тромба в сосудах, активируя образования плазмина.

Тромбоксан А 2 (ТхА 2) - очень активный фактор - способствует быстрой агрегации тромбоцитов, увеличивает доступность их рецепторов для фибриногена, активирует коагуляцию, сужает кровеносные сосуды, вызывает спазм бронхов. ТхА 2 вырабатывается гладкими мышцами сосудов, тромбоцитами. Одним из факторов, стимулирующих выделение тромбоксана А 2 , является кальций, который в большом количестве выделяется из тромбоцитов в начале их агрегации. Тромбоксан еще больше увеличивает содержание кальция в цитоплазме тромбоцитов. Кальций активирует фосфолипазу А 2 , превращающую арахидоновую кислоту в простагландины G 2 , Н 2 , а последний - в тромбоксан А 2 . Кроме того, кальций активирует сократительные белки тромбоцитов, что усиливает их агрегацию и реакцию освобождения.

Тромбоспондин - гликопротеид, который вырабатывается эндотелием сосудов, но находится и в тромбоцитах. Образует комплексы с коллагеном, гепарином, является сильным агрегирующим фактором, опосредуя адгезию тромбоцитов к субэндотелию.

Увеличению тромбогенности сосудов при их повреждении или нарушении функции способствует и ряд других, кроме приведенных выше, факторов. Адгезивными и агрегирующими свойствами обладают субэндотелиальные структуры, особенно коллаген.

Коллаген - наиболее распространенное и прочное соединение - ассоциированные, клейкие гликопротеиды и протеогликаны. Зрелый коллаген состоит из тройной полипептидной цепи, стабилизируется многочисленными связями. Выделяют около 19 типов коллагена, отличающихся толщиной фибрилл, волокнистостью или аморфностью. Образуется коллаген в фибробластах, гладких мышцах, эндотелии. В его образовании большую роль играет витамин С.

Коллаген присутствует в коллагеновых волокнах, базальных мембранах, аморфном основном веществе соединительной ткани, связывает компоненты межклеточного вещества с компонентами клеточных мембран. Коллагены, особенно типа I и III, обладают сильными агрегирующими свойствами: при участии адгезивных белков (фибронектина и VIII-WF) они фиксируют тромбоциты.

Большую роль в активизации тромбоцитов играет АТФ, его энергия и продукты распада (АДФ), образующиеся при повреждении эндотелия. Происходит гидролиз и того АТФ, которым богаты тромбоциты. Поэтому в месте повреждения сосуда, где скапливаются тромбоциты, благодаря обилию тромбоагрегирующих факторов, в том числе и АДФ, будет выделяться много энергии, которая необходима для процессов активизации тромбоцитов.

Заключение . Достижения последних лет в изучении структуры и функции эндотелия сосудов открыли совершенно новые его свойства, что способствовало внедрению новых форм лекарственных средств. Эндотелий оказался огромной эндокринной железой, вырабатывающей широкий спектр биологически активных веществ. Биологически активные вещества эндотелия участвуют во многих механизмах гомеостаза, в том числе и в регуляции местного кровотока. Состав БАВ, вырабатываемых эндотелием, определяется состоянием последнего. В физиологическом состоянии БАВ эндотелия создают условия для адекватного местного кровотока, синтезируя мощные антикоагулянты, являющиеся и вазодилятаторами. Активность эндотелия в норме обеспечивает трофику органов и выполняет защитную функцию благодаря наличию в эндотелии высокоорганизованных механизмов саморегуляции.

При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) оказывают влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т.п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме.

Литература

1. Арабидзе Г.Г., Арабидзе Гр.Г. Гипотензивная терапия // Кардиология. - 1997. - №3. - С.88-95.

2. Балахонова Т.В., Соболева Г.Н., Атьков О.Ю., Карпов Ю.А. Определение чувствительности плечевой артерии к напряжению сдвига на эндотелий как метод оценки состояния эндотелий-зависимой вазодилятации с помощью ультразвука высокого разрешения у больных с артериальной гипертонией // Кардиология. - 1998. - Т.38. - №3. - С. 37.

3. Голиков П.П., Картавенко В.И., Николаева Н.Ю. и др. Состояние вазоактивных факторов у больных с сочетанной травмой // Патологическая физиология. - 2000. - 40. - №8. - С.65-70.

4. Гомазков О.А. Эндотелин в кардиологии: молекулярные, физиологические и патологические аспекты // Кардиология. - 2001. - №2. - С.50-58.

5. Грацианский Н.А. Предупреждение обострений коронарной болезни сердца. Вмешательства недоказанным клиническим эффектам: ингибиторы ангиотензинпревращающего фермента и антиоксиданты // Кардиология - 1998. - №6. - С.4-19.

6. Грацианский Н.А., Качалков Д.В., Давыдов С.А. Связь реакции коронарных артерий на внутрикоронарное введение ацетилхолина с факторами риска ишемической болезни сердца // Кардиология. - 1999. - 39. - №1. - С.25-30.

7. Грибкова И.В., Шуберт Р., Серебряков В.П. NO активирует Ca2+ - активируемый К+ ток гладкомышечных клеток хвостовой артерии крысы через GMP - зависимый механизм // Кардиология. - 2002. - №8. - С.34-37.

8. Дроздова Г.А. Клеточные механизмы артериальной гипертензии // Патологическая физиология. - 2000. - №3. - С.26-31.

9. Зотова И.В., Затейщиков Д.А., Сидоренко Б.А. Синтез оксида азота и развитие атеросклероза // Кардиология. - №4. - С.58-67.

10. Кудряшева О.В., Затейщиков Д.А., Сидоренко Б.А. Эндотелиальный гемостаз: система тромбомодулина и её роль в развитии атеросклероза и его осложнений // Кардиология. - 2000. - 40. - №8. - С.65-70.

11. Мелкумянц А.М., Балашов С.А., Хаютин В.М. Регуляция просвета магистральных артерий в соответствии с напряжением сдвига на эндотелии // Физиолог. журн. - 1992. - №6. - С.70-78.

12. Сергиенко В.Б., Саютина Е.В., Самойленко Л.Е. и др. Роль дисфункции эндотелия в развитии ишемии миокарда у больных ишемической болезнью сердца с неизменными и малоизмененными коронарными артериями // Кардиология. - 1999. - Т.39. - №1. - С.25-30.

13. Сыромятникова Н.В., Кошенко Т.В., Гончарова В.А. Метаболическая активность легких. - СПб.: Интермедика, 1997. - С.35-47.

14. Семченко В., Хаютин В.М., Герова М. и др. Чувствительность малой артерии мышечного типа к скорости кровотока: реакция самоприспособления просвета артерии // Физиол. журн. СССР. - 1979. - №2. - С.291-298.

15. Хадарцев А.А. Биофизико-химические процессы в управлении биологическими системами // Вестник новых медицинских технологий. - 1999. - Т. IV. - №2. - С.34-37.

16. Хаютин В.М., Лукошкова Е.В., Рогоза А.И., Никольский В.П. Отрицательные обратные связи в патогенезе первичной артериальной гипертонии: механочувствительность эндотелия // Физиолог. журн. - 1993. - №8. - С.1-12.

17. Шафер М.Ж., Мареев В.Ю. Роль ингибиторов ангиотензинпревращающего фермента в лечении больных ишемической болезнью сердца, стабильной стенокардией, с сохранением функции левого желудочка // Кардиология. - 1999. - Т. 39. - С.75-84.

18. Cannon R.O. Does coronary endothelial dysfunction cause myocardial ischemia in the absence of obstructive coronary artery disease? // Cirulation. - 1997. - V.96. - P.3251-3254.

19. Celermajer D.S., Sorensen K.S., Gooch V.M. et al. Non - invasive detection of endothelial dysfunction in children end adults at rick atherosclerosis // Lancet. - 1992. - V.340. - P.1111-1115.

20. Fukao M., Mason H.S., Britton F.C. et al. Cyclic GMP - dependent protein kinase activates cloned BKCa channes expressed in mammain cells by direct phosphorykation at serine // Biol. Chem. - 1999. - V.274. - P.10927-10935.

21. Furchgott R.E., Ignore L.S., Murad F. Nutrie oxide as a signaling molecule in the cardiovasenlar system. // Press Releause: The 1998 Nobel Prize in Physiology of Medicine. - Webmaster.

22. Killy D.G., Baffigand S.L., Smith T.W. Nitric oxide and Cardiac function // Circulat. Res. - 1996. - V.79. - P.363-380.

В настоящее время растет интерес к роли функции эндотелия в патогенезе сердечно-сосудистых заболеваний.

Эндотелий – это монослой эндотелиоцитов, выполняющий функции транспортного барьера между кровью и сосудистой стенкой, реагирующий на механическое воздействие потока крови и напряжение сосудистой стенки, чувствительный к различным нейро-гуморальным агентам. Эндотелием непрерывно вырабатывается огромное количество важнейших биологически активных веществ. По существу он является гигантским паракринным органом в человеческом организме. Его главная роль определяется поддержанием кардиоваскулярного гомеостаза путем регуляции равновесного состояния важнейших процессов:

а) тонуса сосудов (вазодилатация/вазоконстрикция);

б) гемоваскулярного гемостаза (выработка прокоагулянтных/антикоагулянтных медиаторов);

в) клеточной пролиферации (активация/ингибирование факторов роста);

г) местного воспаления (выработка про- и противовоспалительных факторов) (табл.1) .

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота – NO. Оксид азота – мощный вазодилататор, кроме того, он является медиатором выработки других биологически активных веществ в эндотелии; короткоживущим агентом, эффекты которого проявляются только местно. Оксид азота играет ключевую роль в кардиоваскулярном гемостазе не только благодаря регуляции сосудистого тонуса, но также ингибируя адгезии и агрегации циркулирующих тромбоцитов, предотвращая пролиферацию клеток гладкой мускулатуры сосудов, различные окислительные и миграционные процессы атерогенеза .

Таблица 1

Функции и медиаторы эндотелия

Медиаторы эндотелия

Вазорегуляторная

(секреция вазоактивных медиаторов)

Вазодилататоры (NO, простациклин, брадикинин)

Вазоконстрикторы (эндотелин-1, тромбоксан А2, ангиотензин II, эндопероксиды)

Участие в гемостазе

(секреция факторов свертывания и фибринолиза)

Прокоагулянты (тромбин, ингибитор активатора плазминогена)

Антикоагулянты (NO, простациклин, тромбомодулин, тканевой активатор плазминогена)

Регуляция пролиферации

Секреция эндотелиального фактора роста, тромбоцитарного фактора роста, фактора роста фибробластов)

Секреция гепариноподобных ингибиторов роста, NO

Регуляция воспаления

Секреция факторов адгезии, селектинов

Выработка супероксидных радикалов

Ферментативная активность

Секреция протеинкиназы С, ангиотензин-превращающего фермента

В настоящее время дисфункцию эндотелия определяют как нарушение равновесия противоположно действующих медиаторов, возникновение «порочных кругов», нарушающих кардиоваскулярный гомеостаз. С дисфункцией эндотелия ассоциируются все основные сердечно-сосудистые факторы риска: курение, гиперхолестеринемия, АГ и сахарный диабет . Нарушения в функции эндотелия, по-видимому, занимают одно из первых мест в развитии многих сердечно-сосудистых заболеваний – АГ, ИБС, хронической сердечной недостаточности, хронической почечной недостаточности. Дисфункция эндотелия – самый ранний этап в развитии атеросклероза. В многочисленных проспективных исследованиях показана взаимосвязь между дисфункцией эндотелия и развитием неблагоприятных сердечно-сосудистых осложнений у больных с ИБС, АГ, периферическим атеросклерозом . Именно поэтому в настоящее время сформулирована концепция об эндотелии как органе-мишени для профилактики и лечения сердечно-сосудистых заболеваний .

У больных с АГ дисфункция эндотелия проявляется прежде всего нарушенной эндотелий-зависимой вазодилатацией (ЭЗВД) в артериях различных регионов, включая кожу, мышцы, почечные и коронарные артерии, микроциркуляторное русло . В механизме развития дисфункции эндотелия при АГ лежит гемодинамический и оксидативный стресс, повреждающий эндотелиоциты и разрушающий систему оксида азота .

Диагностика дисфункции эндотелия

Методы исследования функции эндотелия периферических артерий основываются на оценке способности эндотелия продуцировать NO в ответ на фармакологические (ацетилхолин, метахолин, брадикинин, гистамин) или физические (изменение кровотока) стимулы, прямом определении уровня NO и других NO-зависимых медиаторов, а также на оценке «суррогатных» показателей эндотелиальной функции. Для этого используются следующие методы:

  • веноокклюзионная плетизмография;
  • коронарография;
  • магнитно-резонансная томография;
  • ультразвуковое дуплексное сканирование периферических артерий с проведением проб;
  • оценка микроальбуминурии.
  • Наиболее удобным в практическом отношении неивазивным методом является дуплексное сканирование периферических артерий, в частности оценка изменения диаметра плечевой артерии до и после кратковременной ишемии конечности .

    Методы коррекции дисфункции эндотелия

    Терапия эндотелиальной дисфункции направлена на восстановление равновесия описанных выше факторов, ограничении действия одних эндотелиальных медиаторов, компенсации дефицита других и восстановлении их функционального баланса. В связи с этим большой интерес представляют данные о влиянии различных лекарственных средств на функциональную активность эндотелия. Наличие способности влиять на NO-зависимую вазодилатацию показано для нитратов, ингибиторов АПФ, антагонистов кальция, а также для новых b-адреноблокаторов последнего поколения, обладающих дополнительными вазодилатирующими свойствами.

    Небиволол – первый из b-адреноблокаторов, вазодилатирующее действие которого связано с активацией высвобождения из эндотелия сосудов NO . В сравнительных клинических исследованиях этот препарат повышал вазодилатирующую активность эндотелия, тогда как b-адреноблокаторы второго поколения (атенолол) не влияли на сосудистый тонус . При изучении фармакологических свойств небиволола было показано, что он представляет собой рацемическую смесь D- и L-изомеров, причем D-изомер оказывает b-адреноблокирующее действие, а L-изомер стимулирует выработку NO.

    Сочетание блокады b-адренорецепторов и NO-зависимой вазодилатации обеспечивает не только гипотензивный эффект небиволола, но и благоприятное влияние на систолическую и диастолическую функцию миокарда. Ранние исследования вазодилатирующего действия небиволола у здоровых добровольцев показали, что при остром внутривенном или внутриартериальном введении он вызывает дозозависимую вазодилатацию артериальных и венозных сосудов, опосредованную через NO. Вазодилатирующий эффект небиволола проявлялся в различных регионах сосудистого и микроциркуляторного русла и сопровождался увеличением эластичности артерий, что было подтверждено и у пациентов с АГ . Доказательства NO-зависимого механизма вазодилатирующего эффекта небиволола были получены не только в экспериментальных исследованиях, но и в клинических условиях с помощью тестов с ацетилхолином, ингибитором аргинин/NO системы . Гемодинамическая разгрузка миокарда, оказываемая небивололом, снижает потребность миокарда в кислороде, способствует повышению сердечного выброса у больных с диастолической дисфункцией миокарда и сердечной недостаточностью . Именно способность модулировать сниженную продукцию оксида азота, обладающего ангиопротективными и вазодилатирующими свойствами, является основой антиатеросклеротического действия препарата.

    В современных исследованиях, посвященных изучению вазодилатирующего эффекта небиволола у больных с АГ, было показано, что небиволол в дозе 5 мг в сутки в сравнении с бисопрололом в дозе 10 мг или атенололом в дозе 50 мг в сутки вызывает достоверное снижение индекса сосудистой резистентности, увеличение сердечного индекса, повышение микрососудистого кровотока в различных отделах сосудистого русла, при отсутствии различий в степени снижения АД и отсутствии этих эффектов у атенолола и бисопролола .

    Таким образом, небиволол обладает клинически значимыми преимуществами среди других b-адреноблокаторов. Наличие NO-зависимого вазодилатирующего эффекта небиволола у больных с АГ может иметь большое значение с позиции протективной роли оксида азота против кардиоваскулярных факторов риска и особенно развития атеросклероза. Восстанавливая равновесие в системе оксида азота, небиволол может устранять дисфункцию эндотелия у больных с АГ как в артериальном, так и микроциркуляторном русле и оказывать органопротективное действие, что явилось целью нашего исследования.

    Изучение вазопротективного действия небиволола

    Изучение вазопротективного эффекта небиволола в сравнении с ингибитором АПФ квинаприлом проводилось у 60 пациентов с АГ (cредний возраст 56 лет). Вазопротективный эффект оценивался по динамике вазодилатирующей функции эндотелия с помощью неинвазивных вазодилатационных проб с реактивной гиперемией (эндотелий-зависимая вазодилатация) и нитроглицерином (эндотелий-независимая вазодилатация) и состояния комплекса интима-медиа стенки сонных артерий области бифуркации.

    Больным проводилось общеклиническое обследование, оценка офисного АД и СМАД, дуплексное сканирование сонных артерий с определением толщины комплекса «интима-медиа» (ТИМ), оценка эндотелий-зависимой вазодилатации (ЭЗВД) и эндотелий-независимой вазодилатации (ЭНЗВД) при проведении ультразвукового исследования плечевой артерии. За нормальную ЭЗВД принимали показатели прироста дилатации артерии на 10 %, за нормальную ЭНЗВД – прирост более 15 %; кроме того, оценивался индекс вазодилатации (ИВД) – отношение степени прироста ЭНЗВД к приросту ЭЗВД (нормальный индекс 1,5-1,9). При оценке ТИМ – до 1,0 мм принимали за норму, 1,0-1,4 мм – утолщение, более 1,4 мм расценивали как формирование атеросклеротической бляшки.

    Данные «офисного» АД через 6 месяцев лечения

    небивололом и квинаприлом

    Через 6 месяцев лечения снижение САД/ДАД на фоне терапии небивололом составило 17/12,2 мм рт. ст., на фоне терапии квинаприлом – 19,2/9,2 мм рт. ст. Небиволол показал более выраженное снижение уровня ДАД: по данным офисного измерения ДАД достигло 86,8 против 90 мм рт. ст. (р

    Анализ вазодилатирующей функции плечевой артерии

    Исходно у больных с АГ наблюдались значительные нарушения вазодилатирующей функции плечевой артерии преимущественно в виде снижения ЭЗВД: нормальный показатель ЭЗВД в пробе с реактивной гиперемией (прирост диаметра артерии более 10 %) был зафиксирован только у одной больной; нормальные исходные показатели ЭНЗВД в нитроглицериновой пробе (прирост диаметра артерии более 15 %) имели 22 больных (36 %), при этом ИВД составил 2,4 ± 0,2.

    Через 6 месяцев терапии диаметр плечевой артерии в покое увеличился на 1,9 % в группе небиволола и на 1,55 % в группе квинаприла (p = 0,005), что является проявлением вазодилатирующего действия препаратов. Улучшение вазодилатирующей функции сосудов отмечалось в большей степени за счет ЭЗВД: прирост диаметра сосуда в пробе с реактивной гиперемией достиг 12,5 и 10,1 % на фоне терапии небивололом и квинаприлом соответственно. Выраженность действия небиволола на ЭЗВД была большей как по степени прироста ЭЗВД (p = 0,03), так и по частоте нормализации показателей ЭЗВД (у 20 больных (66,6 %) против 15 больных (50 %) в группе квинаприла). Улучшение ЭНЗВД было менее выражено: лишь у 10 % пациентов отмечен прирост вазодилатации в пробе с нитроглицерином в обеих группах (рис. 1). ИВД к концу лечения составил в группе небиволола 1,35 ± 0,1 и в группе квинаприла – 1,43 ± 0,1.

    Результаты изучения комплекса интима-мадиа сонных артерий

    Исходно нормальные показатели комплекса интима-медиа сонных артерий в области бифуркации (ТИМ 1,4 мм).

    Через 6 месяцев лечения количество больных, имеющих атеросклеротические бляшки, не изменилось; у остальных наблюдалось уменьшение ТИМ на 0,06 мм (7,2 %, p

    При анализе корреляционных взаимосвязей между ЭЗВД и ЭНЗВД и уровнем исходного «офисного» АД выявлена статистически значимая отрицательная корреляция между уровнем САД и ДАД и степенью прироста ЭЗВД и ЭНЗВД. Это говорит о том, что чем выше исходный уровень АД у больных АГ, тем меньше способность сосудов к нормальной вазодилатации (табл. 2). При анализе взаимосвязей между ЭЗВД и ЭНЗВД и выраженностью гипотензивного эффекта к 6 месяцам терапии выявлена статистически значимая отрицательная корреляция между достигнутым уровнем ДАД и степенью прироста ЭЗВД и ЭНЗВД, свидетельствующая о роли нормализации ДАД в обеспечении вазодилатирующей функции сосудов, причем данная зависимость имела место только в отношении небиволола и отсутствовала для квинаприла.

    Таблица 2

    Корреляционный анализ взаимосвязи между АД и вазодилатирующей функцией сосудов

    Показатели

    n
    Spearman
    p
    Прирост ЭЗВД и САД офисное исходно

    Прирост ЭЗВД и ДАД офисное исходно

    Прирост ЭНЗВД и САД офисное исходно
    Прирост ЭНЗВД и ДАД офисное исходно
    Прирост ЭЗВД и САД офисное через 6 месяцев
    Прирост ЭНЗВД и САД офисное через 6 месяцев

    Прирост ЭЗВД и ДАД офисное через 6 месяцев

    Прирост ЭНЗВД и ДАД офисное через 6 месяцев

    Таким образом, в нашем исследовании было показано, что практически у всех больных с АГ отмечается дисфункция эндотелия в виде замедленного и недостаточного вазодилатирующего эффекта при пробе с реактивной гиперемией, что свидетельствует о нарушенной ЭЗВД, при незначительном снижении ЭНЗВД (у одной трети больных ЭНЗВД оставалась нормальной), что коррелировало со степенью повышения АД. В результате лечения в группе небиволола наблюдались более выраженные изменения вазодилатируюшей функции сосудов, причем преимущественно ЭЗВД, что может свидетельствовать о наличии у препарата NO-зависимых механизмов действия. Кроме того, влияние на эндотелиальную функцию сопровождалось и более выраженным гипотезивным действием небиволола, особенно на уровень ДАД, что является дополнительным подтверждением вазодилатирующего эффекта у этого b-блокатора. Нормализуя эндотелиальную функцию, небиволол уменьшал ТИМ у больных с АГ и способствовал торможению прогрессирования атеросклеротических бляшек. Этот эффект небиволола был сопоставим с наиболее высоколипофильным и тканеспецифичным ингибитором АПФ – квинаприлом, антиатерогенные свойства которого были показаны в крупном исследовании QUIET.

    Изучение нефропротективного действия небиволола

    Дисфункция эндотелия является пусковым патогенетическим механизмом развития нефропатии у больных с АГ. Повышение системного АД и нарушение внутриклубочковой гемодинамики, повреждая эндотелий сосудов клубочков, увеличивает фильтрацию белков через базальную мембрану, что на ранних этапах проявляется микропротеинурией, а в дальшейшем – развитием гипертонического нефроангиосклероза и ХПН. Наиболее значимыми медиаторами развития нефроангиосклероза являются ангиотензин II и неполноценный предшественник NO – аномальный диметиларгинин, способствующий развитию дефицита образования оксида азота. Поэтому восстановление функции эндотелиоцитов клубочков может обеспечивать нефропротективное действие на фоне гипотензивной терапии. В этой связи нами проводилось изучение возможностей действия небиволола на микропротеинурию у 40 больных с АГ (cредний возраст 49,2 лет) в сравнении с квинаприлом.

    По данным офисных измерений АД гипотензивный эффект небиволола и квинаприла через 6 месяцев терапии был сопоставимым: 138/85 и 142/86 мм рт. ст соответственно. Однако достижение целевого уровня АД к концу лечения наблюдалось у 41 % больных, получавших небиволол, и лишь у 24 % больных, получавших квинаприл, а добавление ГХТ потребовалось в 6 и 47 % случаев соответственно.

    Исходно микропротеинурия была выявлена у 71 % пациентов с АГ, причем у этих пациентов уровень АД оказался достоверно более высокий, чем у больных, не имеющих микропротеинурии. На фоне лечения небивололом и квинаприлом наблюдалось снижение экскреции альбумина до нормальных показателей как в суточной, так и в утренней порциях мочи; уровень экскреции b2-микроглобулина в течение всего периода лечения сохранялся повышенным в обеих группах (рис. 2).

    Таким образом, оба препарата эффективно улучшали клубочковую фильтрацию и, как результат, уменьшали альбуминурию у больных с АГ. Известно, что механизмом нефропротективного действия ингибитора АПФ квинаприла является устранение повреждающего действия ангиотензина II; для небиволола, не имеющего прямого влияния на ангиотензин II, нефропротективное действие реализуется только за счет прямого вазодилатирующего действия через систему NO.

    Заключение

    Небиволол – представитель нового поколения b-адреноблокаторов с вазодилатирующим действием – относится к классу современных вазоактивных препаратов, регулирующих эндотелиальную функцию через систему NO. Небиволол показал выраженные органопротективные свойства у больных с АГ. Учитывая клиническую значимость дисфункции эндотелия в развитии сердечно-сосудистых заболеваний, небиволол может быть альтернативой ингибиторам АПФ.

    Литература
    1. Vane J.R., Anggard E.E., Botting R.M. Regulatory functions of the vascular endothelium // N.Engl. J. Med. 1990. V. 323. P. 27-36.
    2. Gimbrone M.A. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis // Am. J. Cardiol. 1995. V. 75. P. 67B-70B.
    3. Drexler H. Endothelial dysfunction: clinical implications // Prog.Cardiovascular Dis. 1997. V. 39. P. 287-324.
    4. Heitzer T., Schlinzig T., Krohn K. et al. Endothelial dysfunction, oxidative stress and risk of cardiovascular events in patients with coronary disease // Circulation 2001. V. 104. P. 263-268.
    5. Perticone F., Ceravolo R., Pujia A. et al. Prognostic significance of endothelial dysfunction in hypertensive patients // Circulation. 2001. V. 104. P. 191-196.
    6. Lucher T.F., Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator // Atherosclerosis.1995. V. 118(suppl.). S81-90.
    7. Lind L, Grantsam S, Millgard J. Endothelium-dependent vasodilation in hypertension – A review // Blood Pressure. 2000. V. 9. P. 4-15.
    8. Taddei S., Salvetti A. Endothelial dysfunction in essential hypertension: clinical implications // J.Hypertens. 2002. V. 20. P. 1671-1674.
    9. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension // Circulation. 1993. V. 87. P. 468-474.
    10. Cadrillo C, Kilcoyne CM, Quyyumi A, et al. Selective defect in nitric oxide synthesis may explain the impaired endothelium-dependent vasodilation in essential hypertension // Circulation. 1998. V. 97. P. 851-856.
    11. Broeders M.A.W., Doevendans P.A., Bronsaer R., van Gorsel E. Nebivolol : A Third- Generation ß-Blocker That Augments Vascular Nitric Oxide Release Endothelial ß2-Adrenergic Receptor-Mediated Nitric Oxide Production // Circulation. 2000. V. 102. P. 677.
    12. Dawes M., Brett S.E., Chowienczyk P.J. et al. The vasodilator action of nebivolol in forearm vasculature of subjects with essential hypertension // Br. .J Clin. Pharmacol. 1994. V. 48. P. 460-463.
    13. Kubli S., Feihl F., Waeber B. Beta-blocade with nebivolol enhances the acetylcholine-induced cutaneus vasodilation. // Clin.Pharmacol.Therap. 2001. V. 69. P. 238-244.
    14. Tzemos N., Lim P.O., McDonald T.M. Nebivolol reverses endothelial dysfunction in essential hypertension. A randomized, double-blind, cross-over study // Circulation. 2001. V. 104. P. 511-514.
    15. Kamp O., Sieswerda G.T., Visser C.A. Favourable effects on systolic and diastolic left ventricular function of nebivolol in comparison to atenolol in patients with uncomplicated essential hypertension // Am.J.Cardiol. 2003. V. 92. P. 344-348.

    16. Brett S.E., Forte P., Chowienczyk P.J. et al. Comparison of the effects of nebivolol and bisoprolol on systemic vascular resistance in patients with essential hypertension // Clin.Drug Invest. 2002. V. 22. P. 355-359.

    17. Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive deteсtion of endothelial dysfunction in children and adults at risk of atherosclerosis // Lancet. 1992. V. 340. P. 1111-1115.

    Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

    Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

    Роль эндотелия в норме

    Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

    Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

    1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
    2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
    3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
    4. местного воспаления (выработка про- и противовоспалительных факторов).

    Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

    Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

    Основные функции эндотелия сосудов

    Функции эндотелия

    Основные обеспечивающие механизмы

    Атромбогенность сосудистой стенки

    NO, t-РА, тромбомодулин и другие факторы

    Тромбогенность сосудистой стенки

    Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

    Регуляция адгезии лейкоцитов

    Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

    Регуляция тонуса сосудов

    Эндотелии (ЭТ), NO, РGI-2 и другие факторы

    Регуляция роста сосудов

    VEGF, FGFb и другие факторы

    Азота оксид как эндотелиальный фактор релаксации

    NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

    NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

    Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

    Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

    Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

    Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

    Итак, NO оказывает разнонаправленные эффекты:

    1. прямое отрицательное инотропное действие;
    2. вазодилататорное действие:

    - антисклеротическое (тормозит клеточную пролиферацию);
    - антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

    Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

    Существуют два уровня секреции NO:

    1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
    2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

    Нарушение биодоступности NO происходит вследствие следующих механизмов:

    Снижения его синтеза (дефицит субстрата NO — L-аргинина);
    - уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
    - усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
    - повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

    Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

    К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

    Дисфункция эндотелия

    В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

    Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

    Кроме указанных факторов, ЭД вызывают:

    Гиперхолестеролемия, гиперлипидемия;
    - АГ;
    - спазм сосудов;
    - гипергликемия и сахарный диабет;
    - курение;
    - гипокинезия;
    - частые стрессовые ситуации;
    - ишемия;
    - избыточная масса тела;
    - мужской пол;
    - пожилой возраст.

    Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

    При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

    В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

    Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

    1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
    2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

    Хроническим снижением кровотока;
    - повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
    - повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
    - повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
    - снижением чувствительности и регулирующего влияния мускариновых рецепторов;

    3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

    NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

    В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

    Принципы лечения дисфункции эндотелия

    Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

    Немедикаментозные методы лечения

    В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

    Медикаментозная терапия

    1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
    2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
    3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
    4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
    5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
    6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

    Эндотелийзависимые механизмы L -аргинина:

    Участие в синтезе NO;
    - уменьшение адгезии лейкоцитов к эндотелию;
    - уменьшение агрегации тромбоцитов;
    - снижение уровня ЭТ в крови;
    - повышение эластичности артерий;
    - восстановление ЭЗВД.

    Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

    Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

    Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

    Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

    В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

    Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

    Коноплева Л.Ф.

    Октябрь 30, 2017 Нет комментариев

    Понятие «эндотелиальная дисфункция» было предложено в 1960 г. Williams-Kretschmer с соавт. для обозначения морфологических изменений эндотелия при различных патологических процессах. В дальнейшем, по мере изучения различных аспектов этого явления, оно постепенно приобретало расширенное толкование.

    Понятие «эндотелиальная дисфункция» отражает генерализованное изменение функций эндотелиальной выстилки, проявляющееся расстройством регуляции регионарного и/или системного кровообращения, увеличением прокоагулянтной, проагрегантной антифибринолитической активности крови, повышением провоспалительного потенциала организма и т.д.

    В отличие от интактного эндотелия, обладающего в основном антиагрегантным и антикоагулянтным потенциалом, вазодилатирующим и атимитогенным свойством, активность поврежденной эндотелиальной выстилки способствует гемокоагуляции, тромбообразованию, ангиоспазму, пролиферации элементов сосудистой стенки. Каждое из этих проявлений эндотелиальной дисфункции может иметь в зависимости от конкретных условий их развития как патогенное, так и защитно-приспособительное значение.

    Кроме патогенетически значимых гемодинамических сдвигов, эндотелиальную дисфункцию могут вызывать интенсивные или продолжительные воздействия других повреждающих факторов: дефицит кислорода, токсины, медиаторы воспаления и аллергических реакций и т.д.

    Самые разные воздействия, повреждающие эндотелий, в настоящее время нередко называют стрессорными факторами. Так, например, в современной фундаментальной кардиологии ключевую роль в инициации эндотелиальной дисфункции играет «оксидативный стресс» - процесс, характеризующийся образованием внутри клеток значительного количества активных форм кислорода (супероксидного анион-радикала, перекиси водорода, гидроксильного радикала), вызывающих перекисное (свободнорадикальное) окисление липидов и белков.

    Эндотелиальная дисфункция по ряду общепринятых, «классических» критериев полиэтиологичности, монопатогенетичности, неднозначности (противоречивости) целевых (фенотипических) эффектов, отвечает статусу типовой формы патологии «эндотелиального эндокринного органа».

    Результаты современных исследований позволяют считать, что эндотелиальная дисфункция является одним из ключевых независимых факторов риска практически всех сердечно-сосудистых заболеваний, включая ишемическую болезнь сердца, атеросклероз, первичную артериальную гипертензию, а также сахарный диабет, заболевания воспалительного, аутоиммунного и опухолевого характера. В связи с этим совершенно оправданным с патофизиологической точки зрения оказалось появление в медицинском лексиконе понятия «эндотелийзависимые болезни». Так нередко называют перечисленные выше и многие другие формы патологии современного человека.

    Оценка функционального состояния эндотелия

    Оценка функционального состояния эндотелия. Одним из ключевых патогенетических факторов эндотелиальной дисфункции является снижение синтеза NO эндотелиоцитами (см. ниже). Отсюда логичным представляется использование NO в качестве ее маркера. Однако нестабильность и очень короткий период полураспада (всего 0,05-1,0 с) NO резко ограничиваю! его диагностическое использование в медицинской практике. Оценка содержания стабильных метаболитов NO (нитратов и нитритов) в плазме идя моче также затруднительна в связи с чрезвычайно высокими требованиями к подготовке больного для такого обследования. Именно поэтому в основу разработки и внедрения в клиническую практику тестов по оценке степени выраженности эндотелиальной дисфункции легла извращенная реакция сосудов на те или иные вазодилатирующие стимулы.

    В настоящее время наибольшее распространение получили методы ультразвуковой оценки сосудистой реакции (изменение скорости кровотока и/или диаметра просвета сосуда) в ответ на такие стимулы, как введение ацетилхолина или изменение объема кровотока.

    Тест на введение ацетилхолина

    Введение ацетилхолина в интактный сосуд вызывает вазодилатацию (син.: эндотелийзависимую дилатацию) и увеличение в нем скорости кровотока. В условиях развития эндотелиальной дисфункции сосудистая реакция в ответ на введение ацетилхолина становится «извращенной» (условно - «эндотелийнезави-симой») При этом, чем более выражена эндотелиальная дисфункция в исследуемом сосуде, тем меньше будет его дилатация. Возможно даже развитие парадоксальной реакции сосуда, т.е. его спазмирование (вместо расширения), на введение ацетилхолина.

    Проба с реактивной («постокклюзионной») гиперемией (проба Целер-майера)

    При проведении данной пробы исследуемый сосуд подвергают кратовременной обтурации (напр., путем раздувания баллончика в просвете коронарной артерии во время проведения коронарографии), или компрессии (напр., путем наложения жгута на плечевую артерию при ультразвуковой допплерографии), а затем оценивают реакцию сосуда в ответ на устранение препятствия кровотоку. В «постокклюзионном» периоде должна развиваться постишемическая артериальная гиперемия (дилатация артеральных сосудов и увеличение объемной скорости кровотока). Основу такой нормальной реакции составляют накопление тканевых вазодилатирующих факторов (прежде всего, аденозина тканевого происхождения) и тоногенное влияние самого тока крови, т.е. напряжение сдвига («потокзависимая дилатация»). В условиях эндотелиальной дисфункции наблюдают «извращенную» сосудистую реакцию, аналогичную той, которую регистрируют при проведении пробы с ацетилхолином.

    Кроме указанных методик, в качестве потенциальных маркеров эндотелиальной дисфункции рассматривают ряд продуцируемых эндотелием факторов системы гемостаза, в том числе прокоагулянты – фактор фон Виллебранда и тканевой активатор плазминогена, антикоагулянты - ингибитор активаторов плазминогена и тромбомадулин.

    В 2008 г. группа американских ученых получила данные о том, что биохимические маркеры оксидативного стресса являются независимым предметом эндотелиальной дисфункции. В исследованиях, проведенных на здоровых некурящих добровольцах, они оценивали эндотелиальную функцию двумя способами:

    1) методом “потокзависимой вазодилатации” и 2) путем измерения у участников эксперимента содержания антиоксидантов – толового глютагиона и цистеина. При этом была установлена положительная корреляция между уровнями данных маркеров стресса и потокзависимой ваэодилатацией, что послужило основанием для заключения о причинно-следственной связи между усилением оксидативного стресса и эндотелиальной дисфункцией.

    Доказано, что эндотелиальные клетки сосудистого русла, осуществляя синтез локально действующих медиаторов, морфофункционально ориентированы на оптимальное регулирование органного кровотока. Общая масса эндотелия у человека колеблется в пределах 1600-1900 г, что даже больше массы печени. Поскольку клетки эндотелия выделяют большое количество различных веществ в кровь и окружающие ткани, поэтому их комплекс можно рассматривать как самую большую эндокринную систему.

    В патогенезе и клинике артериальной гипертонии, атеросклероза, сахарного диабета и их осложнений одним из важных аспектов считается нарушение структуры и функции эндотелия. При этих заболеваниях он предстает в роли первоочередного органа мишени, поскольку эндотелиальная выстилка сосудов участвует в регуляции сосудистого тонуса, гемостаза, иммунного ответа, миграции клеток крови в сосудистую стенку, синтезе факторов воспаления и их ингибиторов, осуществляет барьерные функции.

    В настоящее время под дисфункцией эндотелия понимают - дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

    Нарушения продукции, действия, разрушения эндотелиальных вазоактивных факторов наблюдаются одновременно с аномальной сосудистой реактивностью, изменениями в структуре и росте сосудов, которым сопутствуют сосудистые заболевания.

    Патогенетическая роль эндотелиальной дисфункции (ЭДФ) доказана при ряде наиболее распространенных заболеваний и патологических состояний: атеросклерозе, артериальной гипертензии, легочной гипертензии, сердечной недостаточности, дилатационной кардиомиопатии, ожирении, гиперлипидемии, сахарном диабете, гипергомоцистеинемии. Этому способствуют такие модифицируемые факторы риска сердечно-сосудистых заболеваний, как курение, гипокинезия, солевая нагрузка, различные интоксикации, нарушения углеводного, липидного, белкового обменов, инфекция и др.

    Врачи, как правило, сталкиваются с пациентами, у которых последствия эндотелиальной дисфункции стали уже симптомами сердечно-сосудистых заболеваний. Рациональная терапия должна быть направлена на устранение этих симптомов (клиническими проявлениями эндотелиальной дисфункции могут быть вазоспазм и тромбоз).

    Лечение эндотелиальной дисфункции направлено на восстановление дилататорного ответа сосудов.

    Лекарственные препараты, потенциально способные воздействовать на функцию эндотелия, можно разделить на 4 основные категории:

    1. замещающие естественные проективные эндотелиальные субстанции (стабильные аналоги PGI2, нитровазодилататоры, r-tPA);

    2. ингибиторы или антагонисты эндотелиальных констрикторных факторов (ингибиторы ангиотензинпревращающего фермента (АПФ), антагонисты ангиотензин II-рецепторов, ингибиторы TxA2-синтетазы и антагонисты ТxФ2-рецепторов);

    3. цитопротективные вещества: свободнорадикальные скавенгеры супероксиддисмутазы и пробукол, лазароидный ингибитор продукции свободных радикалов;

    4. гиполипидемические препараты.

    Ингибиторы АПФ.

    Наиболее широко изучено влияние на функцию эндотелия ингибиторов АПФ. Огромное значение эндотелия в развитии сердечно-сосудистых заболеваний вытекает из того, что основная часть АПФ расположена на мембране эндотелиальных клеток. 90% всего объема ренин-ангиотензин-альдостероновой системы (РААС) приходится на органы и ткани (10% - на плазму), поэтому гиперактивация РААС является непременным условием эндотелиальной дисфункции.

    Участие АПФ в регуляции сосудистого тонуса реализуется через синтез мощного вазоконстриктора ангиотензина II (АII), оказывающего влияние посредством стимуляции АТ1- рецепторов гладкомышечных клеток сосудов. Кроме того, АТII стимулирует высвобождение эндотелина-1. Одновременно стимулируются процессы окислительного стресса, синтезируются многочисленные факторы роста и митогены (bFGF - фактор роста фибробластов, PDGF - тромбоцитарный фактор роста, TGF-b1 - трансформирующий фактор роста бета и др.), под действием которых изменяется структура сосудистой стенки.

    Другой механизм, более сопряженный собственно с эндотелиальной дисфункцией, связан со свойством АПФ ускорять деградацию брадикинина. Вторичными мессенджерами брадикинина являются NO, простагландины, простациклин, тканевой активатор плазминогена, эндотелиальный фактор гиперполяризации. Повышение активности АПФ, расположенного на поверхности эндотелиальных клеток, катализирует распад брадикинина с развитием его относительного дефицита. Отсутствие адекватной стимуляции брадикининовых В2-рецепторов клеток эндотелия приводит к снижению синтеза эндотелиального фактора релаксации (ЭФР) - NO и повышению тонуса гладкомышечных клеток сосудов.

    Сравнение действия ингибиторов АПФ на эндотелий с другими гипотензивными препаратами показывает, что простой нормализации давления для восстановления функции эндотелия недостаточно. Во многих исследованиях показано, что ингибиторы АПФ могут ослаблять процесс атеросклероза даже в условиях стабильного АД и липидного профиля. Наилучший "успех" в этом направлении имеют ингибиторы АПФ, которые обладают наибольшей аффинностью к тканевой (эндотелиальной) РААС.

    Среди известных ингибиторов АПФ наибольшее сродство к тканевой РААС имеет квинаприлат (активный метаболит квинаприла), который по показателю тканевой аффинности в 2 раза превосходит периндоприлат, в 3 раза - рамиприлат и в 15 раз - эналаприлат. Механизм положительного действия квинаприла на дисфункцию эндотелия связан не только с модулирующим его влиянием на метаболизм брадикинина и улучшением функции В2-рецепторов, но также со способностью этого препарата восстанавливать нормальную деятельность мускариновых (М) рецепторов эндотелия, что приводит к опосредованной дилатации артерий за счет рецепторзависимого увеличения синтеза ЭФР-NO. В настоящее время существуют доказательства того, что квинаприл оказывает прямое модулирующее влияние на синтез ЭФР-NO.

    Способность улучшать функцию эндотелия демонстрируют и другие ингибиторы АПФ, обладающие высокой аффинностью к тканевой РААС, в частности периндоприл, рамиприл, реже эналаприл.

    Таким образом, прием ингибиторов АПФ нивелирует вазоконстрикторные эффекты, предотвращает или замедляет ремоделирование стенок сосудов, сердца. Заметных морфофункциональных сдвигов со стороны эндотелия следует ожидать примерно после 3-6-месячного приема ингибиторов АПФ.

    Гиполипидемические препараты.

    В настоящее время наиболее популярна теория, в соответствии с которой атеросклероз рассматривается как реакция на повреждение сосудистой стенки (прежде всего - эндотелия). В качестве наиболее важного повреждающего фактора выступает гиперхолестеринемия.

    Наиболее богатыми липопротеидными (ЛП) частицами являются липопротеиды низкой плотности (ЛПНП), переносящие около 70% холестерина (ХС) плазмы.

    На поверхности эндотелия расположены специализированные рецепторы к различным макромолекулам, в частности, к ЛПНП. Показано, что при гиперхолестеринемии изменяется структура эндотелия: увеличивается содержание ХС и соотношение ХС/фосфолипиды в мембране эндотелиальных клеток, что приводит к нарушению барьерной функции эндотелия и повышению его проницаемости для ЛПНП. В результате возникает избыточная инфильтрация интимы ЛПНП. При пассаже через эндотелий ЛПНП подвергаются окислению, и в интиму проникают в основном окисленные формы ЛПНП, которые сами по себе оказывают повреждающее действие на структурные элементы как эндотелия, так и интимы. В результате модификации (окисления) ЛПНП с помощью "скэвенджер-рецепторов" происходит массивное неконтролируемое накопление ХС в сосудистой стенке с образованием пенистых клеток - моноцитов, которые проникают внутрь эндотелия, аккумулируются в субэндотелиальном пространстве и приобретают свойства макрофагов, которые захватывают липиды. Этим роль макрофагов далеко не исчерпывается. Они секретируют биологически активные соединения, включая хемотаксины, митогены и факторы роста, которые стимулируют миграцию из медии в интиму гладкомышечных клеток и фибробластов, их пролиферацию, репликацию и синтез соединительной ткани.

    Перекисно-модифицированные ЛПНП наиболее атерогенны. Они обладают прямым цитотоксическим действием, вызывая повреждение эндотелия, стимулируют адгезию моноцитов на его поверхности, взаимодействуют с факторами свертываемости крови, активируя экспрессию тромбопластина и ингибитора активации плазминогена.

    Перекисно-модифицированные ЛПНП играют роль непосредственно в развитии эндотелиальной дисфункции, угнетая продукцию фактора релаксации эндотелия - NO и вызывая усиление продукции эндотелина - потенциального вазоконстриктора.

    На ранних стадиях атеросклероз представлен так называемыми липидными полосками, которые содержат пенистые клетки, богатые ХС и его эфирами. В последующем вокруг зоны накопления липидов развивается соединительная ткань и происходит формирование фиброзной атеросклеротической бляшки.

    Согласно принятой в настоящее время концепции, клиническое и прогностическое значение коронарного атеросклероза определяется стадией развития и морфологическими особенностями атеросклеротических бляшек.

    На ранних этапах формирования они содержат большое количество липидов и имеют тонкую соединительнотканную капсулу. Это так называемые ранимые, или желтые, бляшки. Тонкая соединительнотканная оболочка желтых бляшек может быть повреждена как в связи с воздействием гемодинамических факторов (перепады давления в сосуде, компрессия и растяжение стенки), так и в результате того, что содержащиеся вблизи оболочки макрофаги и тучные клетки вырабатывают протеиназы, которые способны разрушить защитный интерстициальный матрикс. Эрозия или разрыв соединительнотканной капсулы желтых бляшек происходит у края бляшки возле интактного сегмента коронарной артерии. Нарушение целостности фиброзной капсулы приводит к контакту содержащихся в бляшке детрита и липидов с тромбоцитами и к немедленному формированию тромба. Выделение тромбоцитами вазоактивных субстанций может привести к спазму коронарной артерии. В результате развивается острый коронарный синдром - нестабильная стенокардия или мелкоочаговый инфаркт миокарда (при пристеночном тромбозе коронарной артерии), крупноочаговый инфаркт миокарда (при окклюзирующем коронарной артерии). Другим проявлением разрыва атеросклеротической бляшки может быть внезапная смерть.

    На поздних стадиях развития фиброзные бляшки представляют собой плотные ригидные образования, имеющие прочную соединительнотканную капсулу и содержащие относительно мало липидов и много фиброзной ткани - белые бляшки. Такие бляшки расположены концентрически, вызывают гемодинамически значимое (на 75% и более) сужение коронарной артерии и, таким образом, являются морфологическим субстратом стабильной стенокардии напряжения.

    Возможность разрыва плотной фиброзной капсулы белой бляшки не исключена, однако значительно менее вероятна, чем желтой бляшки.

    В связи с тем значением, которое в настоящее время придают ранимым (желтым) бляшкам в генезе острого коронарного синдрома, предупреждение их образования рассматривается как основная цель гиполипидемической терапии при первичной и особенно при вторичной профилактике ИБС. Терапия статинами способна стабилизировать атеросклеротическую бляшку, то есть укрепить ее капсулу и уменьшить вероятность разрыва.

    Опыт применения различных гиполипидемических препаратов показывает, что во многих случаях благоприятный эффект лечения пациентов наблюдается уже в первые недели, когда еще не может быть речи о регрессии атеросклеротических поражений. Положительное влияние гиполипидемических препаратов в ранние периоды их применения связано в первую очередь с тем, что снижение уровня ХС ЛПНП в крови ведет к улучшению функции эндотелия, уменьшению числа адгезивных молекул, нормализации свертывающей системы крови и восстановлению подавленного при гиперхолестеринемии образования NO.

    При гиперхолестеринемии подавляется образование NO и извращается ответная реакция артерий на действие таких вазодилататоров, как ацетилхолин. Снижение уровня ХС в крови позволяет восстановить способность артерий к дилатации при воздействии биологически активных веществ. Другой причиной благоприятного действия гиполипидемической терапии является улучшение диффузии кислорода через капиллярную стенку при сниженном уровне ХС и ЛПНП.

    Естественно, что за 1,5-2 месяца лечения гиполипидемическими средствами атеросклеротические бляшки не могут уменьшиться в размерах. Функциональный класс стенокардии прежде всего зависит от наклонности артерий к спазму, от исходного тонуса сосудов, который в первую очередь определяется оксигенацией гладкомышечных клеток. Зависимость между концентрацией липидов крови и оксигенацией эндотелия сосудистой стенки доказана целым рядом исследований.

    При наличии гиперлипидемии между кровью и эндотелиальным покровом сосуда создается своеобразный динамический барьер из липопротеидов, которые располагаясь по периферии кровяного потока, служат препятствием на пути кислорода от эритроцитов к сосудистому эндотелию и далее. Если это препятствие для кислородной диффузии окажется значимым, сосудистый тонус повысится, готовность к регионарному сосудистому спазму возрастает.

    Особо важным результатом гиполипидемической терапии является снижение смертности от сердечно-сосудистых заболеваний и общей смертности. Это было установлено во многих фундаментальных исследованиях по первичной и вторичной профилактике атеросклероза и ИБС, в которых ХС-снижающая терапия на протяжении примерно 5 лет привела к уменьшению смертности от сердечно-сосудистых заболеваний на 30-42% и общей смертности - на 22-30%.

    Антиоксиданты.

    Имеется множество подтверждений, что свободные радикалы, перекисное окисление липидов и окислительные видоизменения ЛПНП играют роль в инициализации атеросклеротического процесса. Окисленные ЛПНП являются очень токсичными для клеток и могут быть ответственными за повреждение эндотелиального слоя и гибель гладкомышечных клеток.

    Перекисно-модифицированные ЛПНП задерживают образование или инактивируют NO. При гиперхолестеринемии и развивающемся атеросклерозе, когда выработка эндотелиальными клетками и макрофагами супероксидного радикала повышена, создаются условия для непосредственного взаимодействия NО с супероксидным радикалом с образованием пероксинитрата (ONNN-), также обладающего сильным окислительным потенциалом. При этом переключение NO на образование пероксинитрата лишает ее возможности проявить защитный в отношении эндотелия эффект.

    По данным многочисленных экспериментальных и клинических исследований выявлено, что антиоксиданты ингибируют модификацию ЛПНП, уменьшают их поступление в артериальную стенку и, таким образом, препятствуют развитию атеросклероза.

    Понижение концентрации липидов в крови влечет за собой и снижение продуктов перекисного окисления липидов, оказывающих повреждающее действие на эндотелий. Неудивительно, что комбинированное применение ХС-снижающих препаратов из группы ингибиторов ГМК-КоА редуктазы и антиоксидантов (пробукола) оказывает более выраженный защитный эффект на эндотелий, чем эти лекарства в отдельности.

    Существуют доказательства того, что предшественники пнистых клеток - макрофаги не фагоцитируют нативные неизмененные ЛПНП, они поглощают лишь модифицированные ЛПНП, после чего трансформируются в пенистые клетки. Именно они, подвергшиеся перекисному окислению ЛПНП, захваченные макрофагами, играют ведущую роль в развитии эндотелиальной дисфункции и прогрессировании атеросклероза.

    Антиоксиданты защищают ЛПНП от перекисного окисления, а значит и от интенсивного захвата ЛПНП макрофагами, уменьшая таким образом образование пенистых клеток, повреждение эндотелия и возможность инфильтрации интимы липидами.

    Свободные перекисные радикалы инактивируют NO-синтетазу. Этот эффект лежит в основе положительного влияния антиоксидантов на тонус регулирующую функцию эндотелия.

    Одним из наиболее известных антиоксидантов является витамин Е - альфа-токоферол. Проведен целый ряд исследований, в которых продемонстрировано, что витамин Е в дозе 400-800-1000 МЕ в день (100 МЕ соответствует 100 мг токоферола) снижает чувствительность ЛПНП к окислению и защищает от развития эндотелиальной дисфункции и прогрессирования атеросклероза - ИБС.

    В больших дозах (1 г в день) антиоксидантным действием обладает и аскорбиновая кислота - витамин С, который тоже значительно уменьшает чувствительность ЛПНП к окислению.

    Аналогичный эффект в отношении ЛПНП оказывает и бета-каротин - провитамин А, так что бета-каротин, как и витамины С и Е, ингибирует окисление ЛПНП и может рассматриваться как одно из средств профилактики атеросклероза.

    Одновременное длительное использование витаминов С и Е в профилактических целях снижает риск смерти от ИБС на 53%.

    Особо следует выделить антиоксидантные свойства пробукола. Пробукол - слабый гиполипидемический препарат. Влияние пробукола не связано с уменьшением уровня липидов крови. В крови он связывается с липопротеидами, в том числе с ЛПНП, защищая их от перекисной модификации и проявляя таким образом антиоксидантное действие. Дозируется пробукол по 0,5 2 раза в день. После лечения в течение 4-6 месяцев необходимо делать перерыв в приеме в течение нескольких месяцев.

    В ряду антиоксидантов особняком стоит известный лекарственный препарат - предуктал (триметазидин, "Сервье", Франция). Применение предуктала основано на его способности уменьшать повреждение клеток, вызванное свободными радикалами.

    В настоящее время очевидно, что атеросклероз представляет собой процесс, для которого характерны фундаментальные закономерности, свойственные любому воспалению: воздействие повреждающего фактора (окисленных ЛПНП), клеточная инфильтрация, фагоцитоз и формирование соединительной ткани.

    В настоящее время известно, что триметазидин существенно снижает продукцию малонового диальдегида и диеновых конъюгатов. Кроме того, максимально препятствует дефициту внутриклеточного глутатиона (естественный внутриклеточный "захватчик" свободных радикалов) и увеличивает соотношение восстановленный/окисленный глутатион. Эти данные свидетельствуют о том, что на фоне триметазидина повышение окислительной активности клеток происходит в меньшей степени.

    Действие триметазидина также распространяется на агрегацию тромбоцитов. Этот эффект обусловлен ингибированием каскада арахидоновой кислоты и снижением тем самым продукции тромбоксана А2. В дальнейшем это проявляется в снижении агрегации тромбоцитов, вызванную коллагеном.

    Получены также данные, согласно которым триметазидин препятствует активации нейтрофилов.

    Заместительная гормональная терапия у женщин (ЗГТ).

    ЗГТ у женщин после менопаузы рассматривается в настоящее время как одно из важных направлений в профилактике и лечении ИБС и артериальной гипертонии.

    Имеющиеся данные о вазопротективном действии эстрогенов свидетельствуют, что под влиянием эстрогенов увеличивается синтез простациклина, уменьшаются адгезивные свойства тромбоцитов, макрофагов и лейкоцитов, содержание холестерина, ЛПНП.

    По данным плацебо-контролируемого исследования HERZ ЗГТ способствует увеличению базального уровня NO и за счет этого снижению артериального давления.

    Перспективные направления в лечении эндотелиальной дисфункции.

    Большие надежды возлагаются на активацию экзогенными факторами системы L-аргинин/NO/гуанилатциклазы. В качестве активаторов могут быть использованы нитрозотиол, нитропруссид натрия, L-аргинин, протопорфирин Х, дисульфид и др.

    Перспективно применение препарата босентан, являющего блокатором эндотелиновых рецепторов.

    Получены также обнадеживающие результаты экспериментальных и клинических испытаний рекомбинантных генов, кодирующих синтез эндотелиальных факторов роста VEGF, bFGF. Однократное трансэндокардиальное введение ДНК указанных генов в зону гибернирующего миокарда у ряда больных ИБС вызывало через 3-6 месяцев достоверный прирост перфузии, фракции выброса левого желудочка, уменьшало частоту приступов стенокардии, увеличивало толерантность к физической нагрузке. Заметный клинический эффект был получен при введении этих препаратов в ишемизированные ткани больных облитерирующим атеросклерозом артерий нижних конечностей.

    Из медикаментозных средств особого внимания заслуживает препарат небиволол (небилет, "Берлин-Хеми", Германия) - представитель третьего поколения высокоселективных b-адреноблокаторов. Это средство оказывает модулирующее влияние в отношении высвобождения NO эндотелием сосудов с последующей физиологической вазодилатацией. При этом индуцируется эндотелийзависимая релаксация коронарных артерий. Мягко снижается пред- и постнагрузка, конечно-диастолическое давление в левом желудочке, устраняется диастолическая дисфункция сердца.

    Нормализация функции эндотелия достигается в ряде случаев в результате коррекции факторов риска и немедикаментозных методов лечения (снижение массы тела при исходном ожирении, солевой нагрузки, прекращения курения, злоупотребления алкоголем, устранение различных интоксикаций, в том числе инфекционного генеза, увеличение физической активности, физиотерапевтических и бальнеологических процедур и т.п.).

    Для лечения больных с гомозиготной и гетерозиготной семейной гиперхолестеринемией, резистентных к диетической терапии и гиполипидемическим препаратам, применяется аферез ЛПНП. Сущность метода заключается в извлечении из крови апо-В-содержащих ЛП с помощью экстракорпорального связывания с иммуносорбентами или декстранцеллюлозой. Сразу после проведения данной процедуры уровень ХС ЛПНП снижается на 70-80%. Эффект вмешательства является временным, в связи с чем необходимы регулярные пожизненные повторные сеансы с интервалами в 2 недели-1 месяц. В связи со сложностью и высокой стоимостью данного способа лечения он может применяться у весьма ограниченного круга больных.

    Таким образом, имеющийся арсенал лекарственных средств и немедикаментозных методов лечения уже сегодня позволяет при ряде заболеваний эффективно корригировать эндотелиальную дисфункцию.

    Оценка и коррекция эндотелиальной дисфункции сегодня является новым и наиболее перспективным направлением в развитии кардиологии.