Шванновские клетки аксона выполняет следующие функции. Значение шванновские клетки в большой советской энциклопедии, бсэ

ШВАННОВСКИЕ КЛЕТКИ

клетки, леммоциты, клетки нервной ткани, образующие оболочки длинных отростков нервных клеток (аксонов) в периферических нервах и ганглиях. Описаны Т. Шванном в 1838. Ядро Ш. к. овальное, с 1-2 ядрышками; хроматин образует скопления по внутренней поверхности ядерной оболочки. В цитоплазме, концентрируясь вокруг ядра, располагаются митохондрии, лизосомы, комплекс Гольджи, микротрубочки, микрофибриллы, свободные и прикрепленные к мембранам рибосомы. Ш. к. могут иметь реснички. Выполняют в отношении отростков нервных клеток опорную функцию, в мякотных волокнах - функцию образования (а в особых случаях - разрушения) миелина (см. Миелиновая оболочка) . Через вещество Ш. к. или на их стыке в отросток нервной клетки проникают метаболиты. Не исключена возможность образования в Ш. к. ряда веществ, которые затем направляются в отростки. Способность Ш. к. к волнообразным движениям может иметь значение для осуществления транспорта различных веществ по отросткам нервных клеток.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ШВАННОВСКИЕ КЛЕТКИ в русском языке в словарях, энциклопедиях и справочниках:

  • ШВАННОВСКИЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (по имени Т. Шванна) образуют оболочки периферических нервных волокон. Выполняют опорную и трофическую …
  • ШВАННОВСКИЕ КЛЕТКИ в Современном толковом словаре, БСЭ:
    (по имени Т. Шванна), образуют оболочки периферических нервных волокон. Выполняют опорную и трофическую …
  • ШВАННОВСКИЕ в Большом российском энциклопедическом словаре:
    ШВ́АННОВСКИЕ КЛЕТКИ (по имени Т. Шванна), образуют оболочки периферич. нерв. волокон. Выполняют опорную и трофич. …
  • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском словаре:
  • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском большом словаре:
    Травмы грудной клетки составляют 10-12% травматических повреждений. Четверть травм грудной клетки - тяжёлые повреждения, требующие неотложного хирургического вмешательства. Закрытые повреждения …
  • ГИСТОЛОГИЯ в Словаре Кольера:
    наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. …
  • АНАТОМИЯ ЧЕЛОВЕКА: ТКАНИ в Словаре Кольера:
    К статье АНАТОМИЯ ЧЕЛОВЕКА Структурной и функциональной единицей живого является клетка - анатомическая основа большинства организмов, включая человека. Комплексы специализированных …
  • КЛЕТКА в Энциклопедии Биология:
    , основная структурная и функциональная единица всех живых организмов. Клетки существуют в природе как самостоятельные одноклеточные организмы (бактерии, простейшие и …
  • ЦИТОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от цито... и...логия) , наука о клетке. Ц. изучает клетки многоклеточных животных, растений, ядерно-цитоплазматические комплексы, не расчленённые …
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦИТОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦЕНТРОЗОМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ХАРОВЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ФАГОЦИТЫ
    клетки, обладающие способностью захватывать и переваривать твердые вещества. Впрочем, между захватыванием твердых веществ и жидких, по-видимому, нет резкой разницы. Сначала …
  • ТКАНИ РАСТЕНИЙ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ТКАНИ ЖИВОТНЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
  • СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ПРОТОПЛАЗМА ИЛИ САРКОДА в Энциклопедическом словаре Брокгауза и Евфрона.
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словаре Брокгауза и Евфрона:
    (физиол.) — Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый …
  • ЭМБРИОНАЛЬНЫЕ ЛИСТЫ ИЛИ ПЛАСТЫ
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ* в Энциклопедии Брокгауза и Ефрона.
  • ЦИТОЛОГИЯ в Энциклопедии Брокгауза и Ефрона.
  • ЦЕНТРОЗОМА в Энциклопедии Брокгауза и Ефрона.
  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедии Брокгауза и Ефрона.

Шванновские клетки (нейролемноциты)

При изучении структуры нервных волокон Т.Шванном были описаны клетки, отнесенные к глиальнм элементам периферической нервной системы. Они имеют нейроэктодермальное происхождение и формируются так же, как и структуры периферической нервной системы, в области гребешка - образования, расположенного в месте схождения нервных валиков на стадии нейруляции. В опытах с культурой чувствительных ганглиев показано, что шванновские клетки на начальном этапе созревания представляют собой небольшие веретенообразные клетки, обладающие способностью к активному движению за счет псевдоподий. Они перемещаются вдоль растущего аксона, прикрепляясь к нему - начинается процесс миэлинизации. В результате этого изменяется геометрия шванновской клетки, она вытягивается, протоплазма и ядро смещаются к периферии. Описание процесса миелинизации дано в разделе 2.

Микроглия

Микроглиоциты - клетки мезенхимального происхождения впервые были подробно изучены Д.Ортега в 30-х годах 20 века и часто называются его именем. Микроглия эмбрионально связана с мягкими мозговыми оболочками и сосудами и, «по-видимому, без капилляров и нейронов не существует» (А.Л.Микеладзе, Э.И.Дзамоева, 1965). На ранней стадии развития микроглиоциты относят к блуждающим клеткам. Они мигрируют вдоль нервных волокон и кровеносных сосудов. Вначале микроглиоциты имеют округлую форму, в период миграции выпускают псевдоподии, а по окончании рассеивания в нервной системе приобретают вид многоотросчатых (мохнатых) клеток. Форма тела зрелых клеток разнообразна - треугольная, веретенообразная, шаровидная. От тела клетки отходят 2-5 отростков, которые обильно ветвятся и имеют многочисленные мелкие выросты - шипики, количество последних увеличивается по мере удаления от клеточного тела. Несмотря на название, тела микроглиоцитов могут достигать у человека размера 50-70 мкм (в коре головного мозга). Размеры клеток в разных структурах головного мозга существенно разнятся. Так, в коре мозга наряду с крупными клетками нижних слоёв, находят мелкие (размером 5-10 мкм) микроглиоциты в поверхностных слоях. Самые мелкие из них располагаются в молекулярном слое. В толще коры микроглиоциты распределены неравномерно - наибольшее их количество описано в средних (4 и 5) слоях. Обнаружено различие в распространённости клеток микроглии в пределах зрительной и моторной коры. В подкорковых ядрах структура микроглицитов упрощена. Здесь клетки меньше в объёме и не имеют выраженного разветвления отростков. То же самое можно наблюдать в вегетативных ганглиях, варолиевом мосту, спинном мозге и других структурах. Микроглиоциты, как правило. расположены рассеянно в пределах нервной ткани, однако часто они плотно окружают мелкие сосуды и капилляры, могут выступать как клетки-сателлиты вокруг крупных пирамидных нейронов. Особенностью топографического расположения микроглиоцитов является их изолированное положение - отростки клеток не пересекаются и не анастомозируют: каждая клетка занимает свою «ячейку», контактируя с соседними нервными, глиальными клетками и кровеносными сосудами.

В функциональном отношении микроглия является представителем ретикуло-эндотелиальной системы с вытекающими из этого функциями фагоцитоза, участия в иммунных ответов в ЦНС. Микроглиоциты весьма чувствительны к повреждающим воздействиям, проявляя активную пролиферацию в месте повреждения, часто образуя конгломераты, так называемые «зернистые шары».

19 Сентября 2016

Возможно, нервные отростки удастся восстановить

Илья Хель, Hi-News, по материалам University of Wisconsin–Madison: Study finds a key to nerve regeneration

Ученые из Университета Висконсин-Мэдисон обнаружили переключатель, который перенаправляет вспомогательные клетки в периферическую нервную систему в режим «ремонта» и помогает восстанавливать поврежденные аксоны. Аксоны – это длинные волокна нейронов, которые передают нервные импульсы. Периферическая нервная система, сигнальная сеть за пределами головного и спинного мозга, имеет некоторую способность восстанавливать поврежденные аксоны, но этот ремонт проходит медленно и зачастую безрезультатно.

Новое исследование предлагает тактику, которая могла бы запустить или ускорить этот естественный механизм восстановления и помочь, например, в лечении после физических травм, говорит Джон Сварен, профессор компаративных бионаук в Школе ветеринарной медицины Университета Висконсин-Мэдисон. Эти результаты могут быть также полезны для лечения генетических аномалий вроде болезни Шарко-Мари-Тута или повреждений нерва от диабета.

Шванновские клетки (леммоциты) создают изолирующую миелиновую оболочку, которая ускоряет передачу нервных импульсов. В режиме восстановления леммоциты создают «ремонтную бригаду», которая добавляет стимуляцию отрастания нерва к обычной работе изоляции. Сварен, старший автор работы, опубликованной 30 августа в Journal of Neuroscience (Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury – ВМ), изучал, как леммоциты, обнимающие аксоны в периферической нервной системе, преобразуются и начинают играть более активную и «умную» роль после повреждения.

Сварен и его аспирант Джозеф Ма сравнили активацию генов в шванновских клетках у мышей с неповрежденными или вырезанными аксонами. «Мы увидели набор скрытых генов, которые становятся активны, но только после травмы», говорит Сварен, «и они начинают программу, которая помещает леммоциты в режим восстановления, в котором они выполняют несколько видов работы, необходимых для отрастания аксона».

В этом режиме починке, но не в обычном, шванновские клетки начинают убираться по дому, помогая растворять миелин, который необходим для правильного функционирования, но по иронии судьбы мешает регенерации после травмы. «Если вы пригласите шванновские клетки на вечеринку, – говорит Сварен, – они начнут убирать бутылки и мыть посуду, пока все не уйдут».

Эта зачистка должна происходить в течение нескольких дней после повреждения, говорит Сварен. Шванновские клетки также выделяют сигналы, которые призывают кровяные клетки к помощи в очистке, намечают путь отращивания для аксона. Наконец, они возвращаются к роли изолятора, выращивая замену миелиновой оболочки на регенерированном аксоне.

Неожиданно было обнаружено, что переход леммоцитов в ремонтную форму не включал возврат к более примитивной форме, а скорее был основан на изменении в регуляции его генов.

«Почти все другие реакции нервной системы на травму, особенно в мозге, нуждаются в стволовых клетках, чтобы повторно отрастить клетки, но здесь нет никаких стволовых клеток», говорит Сварен. «Шванновские клетки перепрограммируют себя, чтобы запустить программу по ремонту травмы. Мы увидели в них активных игроков с двойной ролью по защите и регенерации аксона, и мы исследуем, какие факторы определяют начало и эффективность программы».

После того, как человеческий геном был расшифрован, эпигенетика – изучение регуляции генов – переместилась на передний план. Мы поняли, что гены не имеют особого значения, если их не включить, и эти генетические переключатели играют важнейшую роль в том, почему клетки кожи не похожи на клетки нервов, а нервные клетки работают не так, как клетки крови.

В эпигенетике, как и в остальной биологии, процессы зачастую регулируются балансом между сигналами «стоять» и «идти». В случае с переходом шванновских клеток, Сварен и Ма идентифицировали систему под названием PRC2, которая по сути заглушает ремонтную программу. «Этот путь сводится к переключателю «вкл/выкл», который обычно выключен», говорит Сварен, «и мы хотим узнать, как включить его, чтобы начать процесс восстановления».

Природа системы глушителей генов высшего уровня предложил препараты, которые могли бы убрать метку заглушки с интересующих генов; Сварен говорит, что определил фермент, который может «убрать с тормоза» и намеренно активировать программу ремонта в случае необходимости ответа на травму.

Даже если испытания лекарств будут проходить успешно, потребуются годы экспериментов, прежде чем эту систему испытают на людях. Кроме того, до конца непонятно, насколько хорошо может регенерировать аксон. Едва ли эта одна дорожка приведет к панацее, но они надеются, что она станет важной.

В конечном счете это исследование могло бы открыть новую дверь к регенерации хотя бы одного ключевого сектора нервной системы.

Выполняют опорную (поддерживают аксон) и трофическую (питают тело нейрона) функции. Описаны немецким физиологом Теодором Шванном в 1838 году и названы в его честь.

Каждое периферическое нервное волокно одето тонким цитоплазматическим слоем - невролеммой или шванновской оболочкой. Волокно является миелинизированным, если между ним и цитоплазмой шванновской клетки имеется значительный слой миелина. Если волокна лишены миелина, то они называются немиелинизированными безмякотными. Шванновские клетки могут осуществлять волнообразные движения, что, вероятно, способствует транспортировке различных веществ по отросткам нервных клеток.

С нарушением работы шванновских клеток связаны такие нервные заболевания, как синдром Гийена - Барре , болезнь Шарко-Мари , шванноматозис и хроническая воспалительная демиелинизирующая полинейропатия . Демиелинизация в основном происходит из-за ослабления двигательных функций шванновских клеток, в результате чего они оказываются не способны образовывать миелиновую оболочку.

См. также

Напишите отзыв о статье "Шванновские клетки"

Примечания

Литература

  • Шваннова оболочка // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Шванновские клетки

– Если вы сейчас же не успокоитесь, я уйду с контакта, а вы можете дальше бунтовать в одиночку, если это доставляет вам такое большое удовольствие.
Мужчина явно удивился, но чуть-чуть «остыл». Было впечатление, что он не привык, чтобы ему не подчинялись немедленно, как только он «изъявлял» любое своё желание. Я никогда не любила людей этого типа – ни тогда, ни когда стала взрослым человеком. Меня всегда возмущало хамство, даже если, как в данном случае, оно исходило от мёртвого...
Мой буйный гость вроде бы успокоился и уже более нормальным голосом спросил, хочу ли я ему помочь? Я сказала, что да, если он обещает себя нормально вести. Тогда он сказал, что ему совершенно необходимо поговорить со своей женой, и что он не уйдёт (с земли) пока он не сможет до неё «достучаться». Я наивно подумала, что это один из тех вариантов, когда муж очень любил свою жену (несмотря на то, как ни дико это выглядело по отношению к нему) и решила помочь, даже если он мне и очень не нравился. Мы договорились, что он вернётся ко мне на завтра, когда я буду не дома и я попробую сделать для него всё, что смогу.
На следующий день я с самого утра чувствовала его сумасшедшее (иначе назвать не могу) присутствие. Я мысленно посылала ему сигнал, что я не могу торопить события и выйду из дома, когда смогу, чтобы не вызывать лишних вопросов у своих домашних. Но, не тут то было... Мой новый знакомый был опять совершенно нестерпимым, видимо возможность ещё раз поговорить со своей женой делала его просто невменяемым. Тогда я решила поторопить события и отвязаться от него, как можно скорее. Обычно в помощи я никому старалась не отказывать, поэтому не отказала и этой странной, взбалмошной сущности. Я сказала бабушке, что хочу пройтись и вышла на двор.
– Ну что ж, ведите, – мысленно сказала я своему спутнику.

При изучении структуры нервных волокон Т.Шванном были описаны клетки, отнесенные к глиальнм элементам периферической нервной системы. Они имеют нейроэктодермальное происхождение и формируются так же, как и структуры периферической нервной системы, в области гребешка - образования, расположенного в месте схождения нервных валиков на стадии нейруляции. В опытах с культурой чувствительных ганглиев показано, что шванновские клетки на начальном этапе созревания представляют собой небольшие веретенообразные клетки, обладающие способностью к активному движению за счет псевдоподий. Они перемещаются вдоль растущего аксона, прикрепляясь к нему - начинается процесс миелинизации. В результате этого изменяется геометрия шванновской клетки, она вытягивается, протоплазма и ядро смещаются к периферии. Описание процесса миелинизации периферических волокон дано в разделе 2.

Микроглия

Микроглиоциты - клетки мезенхимального происхождения впервые были подробно изучены Hortega в 30-х годах ХХ века и часто называются его именем. Микроглия эмбрионально связана с мягкими мозговыми оболочками и сосудами и, «по-видимому, без капилляров и нейронов не существует» (А.Л.Микеладзе, Э.И.Дзамоева, 1965). На ранней стадии развития микроглиоциты относят к блуждающим клеткам. Они мигрируют вдоль нервных волокон и кровеносных сосудов. Вначале микроглиоциты имеют округлую форму, в период миграции выпускают псевдоподии, а по окончании рассеивания в нервной системе приобретают вид многоотросчатых (мохнатых) клеток (рис.1).

Рис.1

  • - затылочная кора
  • - верхние бугры четверохолмия
  • 3, 4, 5, 8 - спинной мозг
  • 6. -ядро Эдингер-Вестфаля
  • - гипоталамус (вентролатеральное ядро)
  • 9. - центральное серое вещество
  • 10 - зрительный бугор

Форма тела зрелых клеток разнообразна - треугольная, веретенообразная, шаровидная. От тела клетки отходят 2-5 отростков, которые обильно ветвятся и имеют многочисленные мелкие выросты - шипики, количество последних увеличивается по мере удаления от клеточного тела. Несмотря на название, тела микроглиоцитов могут достигать у человека размера 50-70 мкм (в коре головного мозга). Размеры клеток в разных структурах головного мозга существенно разнятся. Так, в коре мозга наряду с крупными клетками нижних слоёв, находят мелкие (размером 5-10 мкм) микроглиоциты в поверхностных слоях. Самые мелкие из них располагаются в молекулярном слое. В толще коры микроглиоциты распределены неравномерно - наибольшее их количество описано в средних (4 и 5) слоях. Обнаружено различие в распространённости клеток микроглии в пределах зрительной и моторной коры. В подкорковых ядрах структура микроглицитов упрощена. Здесь клетки меньше в объёме и не имеют выраженного разветвления отростков. То же самое можно наблюдать в вегетативных ганглиях, варолиевом мосту, спинном мозге и других структурах. Микроглиоциты, как правило. расположены рассеянно в пределах нервной ткани, однако часто они плотно окружают мелкие сосуды и капилляры, могут выступать как клетки-сателлиты вокруг крупных пирамидных нейронов. Особенностью топографического расположения микроглиоцитов является их изолированное положение - отростки клеток не пересекаются и не анастомозируют: каждая клетка занимает свою «ячейку», контактируя с соседними нервными, глиальными клетками и кровеносными сосудами.

В функциональном отношении микроглия является представителем ретикуло-эндотелиальной системы с вытекающими из этого функциями фагоцитоза, участия в организации иммунных ответов в ЦНС. Микроглиоциты весьма чувствительны к повреждающим воздействиям, проявляя активную пролиферацию в месте повреждения, часто образуя конгломераты, так называемые «зернистые шары».