Передачи данных c использованием интерфейса. Последовательные интерфейсы передачи данных

Домофон — устройство, предназначенное для защиты территории от несанкционированного входа. Он представляет собой аппарат для переговоров между внутренней и внешней зонами. Кроме того, запорные элементы блокируют дверной замок, не позволяя без разрешения войти внутрь. Для того чтобы попасть во внутреннюю зону, достаточно поднести ключ домофона к специальному разъему либо набрать код с клавиатуры.

Из чего состоит домофон и как он работает?

Домофонная система состоит из трех основных компонентов: блока вызова внутренней зоны — дверной станции и переговорной, электромагнитного либо электромеханического замка-фиксатора, переговорного устройства. В переговорном устройстве может использоваться видео или аудиосигнал. Все компоненты соединяются между собой коммутатором. Устройство домофона напрямую зависит от того, какие дополнительные функции в нем заложены.

Главная функция — защита внутренней зоны от несанкционированного проникновения и пожара. Принцип работы заключается в срабатывании оповещения о внештатной ситуации на центральный пульт, пульт консьержа либо диспетчера. Оповещение срабатывает не сразу, лицу дается возможность покинуть территорию в течение определенного времени. Данный промежуток времени программируется при изначальном подключении домофона и составляет не более 5 минут.

В качестве дополнительной функции может быть заложена возможность передачи посетителем видео- или аудиосообщения при отсутствии хозяина дома, а также наоборот, от хозяина посетителю. Большинство моделей поддерживают функцию оповещения внутренней зоны спецсигналом при открытии двери ключом либо с клавиатуры. В клавиатурных домофонах изначально установлен заводской код для открытия двери. Его можно сменить при желании непосредственно на самом пульте главного блока посредством программирования с клавиатуры.

Существуют беспроводные модели домофонов. Основной блок подключается к электросети, а передача сигнала между компонентами домофона происходит по Wi-Fi на определенной частоте. К беспроводным аппаратам можно подключать для управления другие устройства, работающие по данной технологии. Недостаток системы — ограниченный радиус действия. Такие устройства не работают в зданиях с толстыми стенами. Они чувствительны к сторонним помехам. Продвинутые модели оснащены функцией SMART, которая позволяет передавать видео и фото с домофона на смартфон.

Видеодомофоны отличаются от аудио- аналогов наличием встроенной видеокамеры. Они позволяют передавать изображение во внутреннюю зону. Некоторые модели могут выводить изображение с двух точек, например, входной двери подъезда и пролета этажа. Продвинутые устройства позволяют выдавать на монитор одновременно до 32 картинок. Многие устройства могут подключаться к телефонной линии и службам экстренного вызова.

Посмотрите видео, на котором мастер произвел соединение домофона с электромеханическим замком и вызывной панелью.

Как работает ключ домофона?

Большинство пользователей домофонных ключей уверены, что процесс открытия двери происходит посредством размагничивания замка. Это заблуждение. Стандартный ключ — запрограммированное устройство с энергонезависимой памятью Touch Memory, куда вшито специально ПО. Соединение происходит с помощью однопроводного интерфейса (шины One-wire). Данная шина позволяет подключать к аппарату по одному проводу 2 и более устройства. В пассивном состоянии (режиме ожидания) по проводу поступает питание к блоку домофона.

Также в ключе имеется конденсатор, который обеспечивает питание устройства в момент соединения. Производитель домофонной системы прописывает в ключе и микроконтроллере аппарата специальный код открытия двери. Он уникален и не повторяется. Принцип работы ключа: при поднесении ключа к разъему происходит считывание информации с ключа и сверка с данными в базе микроконтроллера. Процесс идентификации длится не более 2 секунд. Если информация совпадает, срабатывает размыкание замка двери.

Изменить работу ключа можно только программным путем. По такому же принципу создается универсальный ключ. Его универсальность срабатывает за счет наличия свободной памяти в микроконтроллере домофона. Именно она служит для идентификации принадлежности ключа к устройству, так как ее значение прописано в ПО самого ключа. Принцип работы заключается в считывании кода ячеек свободной памяти, такой ключ распознается как прописанный в базе микроконтроллера. Процесс идентификации длится значительно дольше.

Ключи на базе Touch Memory используются чаще всего. Существуют и другие виды домофонных ключей. Их принцип работы немного отличается. Ключ на базе Proximity — бесконтактное устройство, позволяющее дистанционно открывать двери. Изготавливается в форме карты или брелка, менее распространен, но более надежен, чем устройство на базе Touch Memory.

Резистивные ключи работают на основе вшитого в них резистора. Номинал резистора является кодом ключа. Форма пластины не позволяет подключить к ключу другой резистор, поэтому несанкционированное проникновение будет исключено. Недостаток такого ключа — легко изготовить дубликат, так как для всех пользователей домофонной системы используется только один номинал резистора.

Герконовые ключи работают на основе магнитной пары: одна часть геркона вшита в ключ, вторая ответная часть — в специальную колбу на замке внутренней зоны. При воздействии герконовой части ключа срабатывает переключатель в колбе, открывая замок. Оптические ключи работают по принципу оптопары: светодиода и фотодиода. Ключ изготавливается в форме пластины, на которую нанесены отверстия в определенном порядке. Данные кодовые комбинации считываются при поднесении ключа к фотодиоду. Недостаток ключа — появление загрязнений, которые препятствуют считыванию. Такой ключ подлежит замене.

Однако с ней ежедневно сталкиваются сотни тысяч людей, чтобы попасть к себе домой.

Сегодня практически на каждом подъезде установлены панели доступа.

А их клиенты, жители дома — даже не задумываются, как называется .

Это может быть привычная таблетка, бесконтактный брелок, пластина оптического распознавания и даже компактный герконовый блок.

Устройство ключа от домофона

Как устроен ключ от и как именно происходит взаимодействие основного микропроцессорного модуля системы с индивидуальным «отпирателем» — зависит от конкретной модели системы.

Сегодня наиболее распространены:

  1. классические Touch Memory, привычные таблетки;
  2. бесконтактные RFID, брелки или карты;
  3. индивидуальные пластины оптического распознавания.

Простой ответ на вопрос, как работает домофонный ключ, звучит так: происходит постоянный опрос со стороны системы в ожидании ответа от индивидуальной таблетки, брелка. В оптических распознавателях началом процесса идентификации служит вставка пластины в соответствующий приемник.

Внутри любого индивидуального средства открывания двери — электронная схема. Устройство ключа домофона может подразумевать замыкание электрической схемы или активацию радиопередатчика, для передачи личного кода пользователя.

Принцип работы домофонного ключа

Как называется ключ от домофона от подъездной двери — наверное, знает каждый, кто его хоть раз терял и сталкивался с необходимостью заказывать новый.

Самый распространенный тип индивидуальных индентификаторов строится на Touch Memory. Внутри привычной таблетки — блок энергонезависимой памяти и схема сопряжения.

И хотя принцип работы ключа от домофона данного типа не меняется — у отдельных производителей отличаются характеристики, так сказать, его внутренней начинки.

Поэтому определенные типы домофонных блоков работают только с конкретным списком типов таблеток.

ONE-WIRE

Протокол обмена данными ONE-WIRE позволяет подключить к одной линии 2 или более цифровых приборов.

Устройство ключа домофона Touch Memory работает именно в такой системе.

При прикладывании таблетки к считывателю происходит следующее:

  • замыкается цепь, формируя сигнал к началу считывания идентификатора;
  • используя разные интервалы замыкания и освобождения цепи, схема передает цифровые данные;
  • при совпадении идентификатора с одним из записанных в памяти хранилища — дверь открывается.

Скорость работы протокола сильно зависит от условий окружающей среды и состояния контактных площадок. Так, чистый ключ, без загрязнений поверхности, приложенный к аналогичного качества считывателю — идентифицируется практически мгновенно. Максимальное время, которое система пытается опознать индивидуальную таблетку — 2 минуты.

Взаимодействие ключа и домофона

Зная, как правильно называется ключ от домофона — можно понять принцип действия системы. К примеру, RFID уже ясно показывает на использование радиоволн.

Такой брелок (или карта) работает следующим образом:

  1. внутри брелка или карты расположена электронная схема, энергонезависимая память, приемо-передающая антенна, одновременно выступающая в роли источника питания;
  2. при приближении к домофону, внутри RFID системы магнитной индукцией генерируется энергия;
  3. электронная схема посылает сигнал начала считывания, при ответе готовности домофона — передает идентификатор.

Ответ на вопрос, как устроен ключ от домофона от подъезда с бесконтактным принципом работы — всегда одинаков, выполнен ли он в виде брелка или плоской карточки.

Существуют и другие варианты выполнения домофонных открывашек. Один из них достаточно распространенный. Ответить, из чего состоит ключ от домофона оптической идентификации — очень просто.

Это полоска металла. В ней проделаны отверстия, позиция которых формирует индивидуальный код доступа. Такой ключ считывается приемником, при помощи светодиодов и фотоэлементов.

Заключение

Сегодня на рынке присутствуют самые разнообразные решения идентификации человека.

Домофонные системы получили громадное распространение по ряду причин. Первая и самая важная — простота и низкая цена производства.

Вторая — проверенные, надежные инженерные решения и протоколы, используемые в системах управления доступом.

Поэтому таблетки Touch Memory и все больше распространяющиеся бесконтактные RFID — еще долго останутся привычным предметом в кармане или сумочке городского обитателя.

Видео: Что внутри ключей для домофона и как это работает

Интерфейс передачи данных говоря простым языком это своеобразный переходник между узлами, он знает, как передавать данные, что при этом использовать и чего ждать в ответ. А вот официальное определение уже звучит сложнее - это некая граница между двумя объектами или узлами, которые регламентируются особым принятым стандартом и реализуются с помощью установленных методов, средств и правил. Рассмотрим основные виды интерфейсов передачи данных.

Интерфейс Ethernet

С ним сталкивался практически каждый пользователь. Первоначальное его предназначение коммуникация между офисными устройствами. Для реализации первых соединений применялась линейная топология, и простой коаксиальный кабель. На сегодняшний момент данный подход уже устарел, да и наверное большинство пользователей удивляться как можно было компы соединить между собой коаксиальным кабелем, а раньше были такие сетевые карты. Сейчас в основе построения сетей используется топология «звезда», реализуемая и делимая на части маршрутизаторами и коммутаторами. По интерфейсу Ethernet можно передавать информацию со скоростью 10, 100, 1000 Мбит/сек. Одной из особенностей данного интерфейса является наличие MAC адреса, который вшит в аппаратную часть Вашей сетевой карты, приблизительно это как IMEI сотового телефона. С помощью него происходит распознавание того узла, который отправил и получил данные. Каждый MAC адрес уникален, достигается это тем, что разработчики устройств делят между собой общее множество значений. За тремя старшими байтами в MAC - адресе закреплен свой производитель.

Интерфейс USB

Также популярный интерфейс последовательной передачи данных USB (Universal Serial Bus). Все современные устройства оборудованы данным интерфейсом, главная его особенность в том, что используется технология Plung and Play. Означает это, что любое устройство с интерфейсом USB можно подключать и работать, в большинстве случаев избегая установки дополнительных драйвером. Например: флешки, переносные жесткие диски, клавиатуры, мыши и т. п. Одним из существенных плюсов USB подача питания на одном из контактов, что в свою очередь позволяет исключить дополнительный источник питания при подключении оборудования.

Интерфейс IrDA

Данный вид интерфейса уже практически устарел и многие даже не вспомнят его. А вот в недалеком прошлом без него практически невозможно было подключить первые сотовые телефоны к компьютеру. Его задача состояла в том, чтобы подключить то или иное оборудование с помощью инфракрасного излучения. Скорость передачи была очень низкой составляла всего 2400 - 115 200 bps, и ограничение нельзя было использовать на больших расстояниях. Как и упоминал выше, данный интерфейс в основном использовался в сотовых телефонах, но и компьютерная техника не исключение. На сегодняшний момент такую технологию применяют в пультах дистанционного управления различных устройств, например телевизоры, аудио-видео аппаратура и т. п.

Интерфейс HDMI

Данный интерфейс позволяет передавать медиа данные. Отличительной способность от старого интерфейса VGA, он позволяет передавать видео со звуком. Имеет большую пропускную способность и позволяет транслировать видео высокой четкости. Аббревиатура HDMI именно так и расшифровывается Hugh Definition Multimedia Interface.

Интерфейс Bluetooth

Он пришел на смену IrDA и сейчас активно используется во многих устройствах для создания связи между ними. Например: мышки, телефоны, ноутбуки, внешняя акустика и т. п. Производители заявляют радиус действия 100 метров, но на практике таких показателей добиться очень трудно, как правило составляет порядка 10 метров. Средняя скорость передачи данных составляет 3 Мбит/с.

Интерфейс Wi-Fi

Достаточно новый вид интерфейса, но уже завоевавший сердца многих пользователей. Основное его преимущество это беспроводное подключение. Используется практически во всех электронных устройствах, начиная от компьютеров, телевизоров и заканчивая лампочками и умными розетками. Технические характеристики постоянно улучшаются и усовершенствуются. Средняя скоро передачи составляет от 450 до 1300 Мбит/с.

Интерфейс RS-232

Один из наиболее распространенных последовательных интерфейсов. Первоначально разработан для связи терминалов с центральным компьютером, в настоящее время широко применяется для обмена данными между ПК и одиночными микроконтроллерными устройствами. Интерфейс RS-232 предназначен для соединения двух устройств (рис. 21). Передатчик одного устройства соединяется с приемником другого, и наоборот, что обеспечивает полудуплексный режим передачи данных. Для управления подключенным устройством можно использовать дополнительные линии порта RS-232 или специальные символы, добавляемые к передаваемым данным.

Скорость передачи 19 200 бит/c

Протяженность линии связи 15 м

Вид сигнала потенциальный с общим проводом

Число передатчиков 1

Число приемников 1

Интерфейс RS-422

Интерфейс разработан в 1975 г. для обмена данными между центральным компьютером и периферийным оборудованием. Интерфейс использует симметричную линию связи (рис. 22) и обеспечивает работу удаленного оборудования с ускоренным обменом данными. Интерфейс обеспечивает хорошее подавление помех общего вида за счет использования витой пары в качестве линии связи. Каждый передатчик может быть нагружен на несколько приемников (до 10), что позволяет обмениваться одновременно с несколькими устройствами.


Скорость передачи 10 Мбит/c

Протяженность линии связи 1200 м

Вид сигнала дифференциальный, витая пара

Число передатчиков 1

Число приемников 10

Организация связи полный дуплекс, точка-точка.

Интерфейс RS-485

Интерфейс широко распространен в промышленности для двунаправленного обмена данными по симметричной двухпроводной линии связи с повышенной нагрузочной способностью и протяженностью (рис. 23). Применяется для организации сетей типа «звезда» или «кольцо». Применение ретрансляторов позволяет увеличить расстояние между абонентами и организовать новый сегмент сети.

Интерфейс CAN

Последовательный интерфейс CAN специально разработан для объединения датчиков, исполнительных устройств и интеллектуальных контроллеров, управляющих каким-либо объектом в системах промышленной автоматизации. На рис. 24 приведена схема построения МПС на основе специальной магистральной шины.

Основные преимущества интерфейса: обеспечение режима обмена в реальном масштабе времени благодаря возможности инициативной передачи сообщений, высокая помехоустойчивость и протокол с коррекцией ошибок.

Лекция 4 Типы интерфейсов данных

Лекция 4

Тема: Типы интерфейсов данных

Данные в сетях передаются в виде пакетов или ячеек. Сначала использовалась передача пакетов, которая до сих пор остается наиболее распространенным методом передачи данных в локальных сетях. Передача ячеек (пакетов фиксированной длины) позволяет строить высокоскоростные каналы между локальными и глобальными сетями. Для каждого метода передачи необходимы специальные интерфейсы, управляющие сетевыми коммуникациями на физическом уровне. В следующих разделах описываются и сравниваются используемые в сетях пакеты и ячейки, а также предназначение для них интерфейсы.

Передача пакетов

Данные передаются от узла к узлу в виде больших фрагментов, называемых пакетами или фреймами. Коммуникационное программное обеспечение каждого узла разбивает данные на такие фрагменты. В зависимости от передающей среды, фрагмент данных преобразуется в электрический, радио- или световой сигнал, который и может быть передан между узлами. Требуется много пакетов данных, чтобы передать страницу текста или файл.

Формат пакетов определяется используемым в сети протоколом. Например, протокол определяет способ указания адреса узла, посылающего пакет, адреса принимающего узла, типа передаваемых данных, размера пакета, объёма передаваемых данных и метода обнаружения поврежденных пакетов или коммуникационных ошибок. Другой важной частью пакета является синхронизирующая информация для передачи множества пакетов, позволяющая отсылать пакеты через заданные интервалы времени. На рис.1 показан общий формат пакета.

Для физической передачи пакетов в сеть служит карта сетевого интерфейса, или сетевой адаптер (networkinterface card, NIC). Сетевой адаптер позволяет подключить рабочую станцию, файл-сервер, принтер или другое устройство к сетевой передающей среде, например, к коаксиальному кабелю или витой паре. На одном конце адаптера располагается разъем (или коннектор), соответствующий типу сетевой среды.

Сетевой адаптер является приемопередатчиком, обеспечивающим канал передачи данных в сетевой среде. Его встроенные средства упаковывают во фрейм заголовок, исходный и целевой адреса, данные и хвостовик, а фрейм в виде законченного пакета передается в коммуникационную среду. Сетевой адаптер имеет алгоритмы для приема, распаковки, передачи и синхронизации данных, а также для управления конфликтами и ошибками. Программные алгоритмы, реализующие эти функции, хранятся в исполняемых и служебных файлах, называемых сетевыми драйверами. Для каждого сетевого адаптера необходимы определенные сетевые драйверы, соответствующие методу доступа к сети, формату инкапсуляции данных, типу кабельной системы и физической (MAC) адресации. В программных драйверах реализуются стандарты многоуровневых сетевых коммуникаций, заданные эталонной моделью OSI. Драйверы позволяют сетевому адаптеру выполнять передачу данных на Физическом (Уровень 1) и Канальном (Уровень 2) уровнях.

Передача ячеек

Обычно ячейка (cell) содержит фрагмент данных фиксированной длины в формате, пригодном для передачи с большими скоростями - от 155 Мбит/с до 1 Гбит/с и выше. Как показано на рис. 2 ячейка имеет заголовок(header), в котором содержится следующая информация:

Данные для управления потоком, координирующие передачу информации между исходным и целевым узлами;

Информация о маршруте и канале, позволяющая передавать данные по кратчайшему маршруту;

Признак, указывающий на то, содержит ли ячейка реальные данные или управляющую информацию для осуществления высокоскоростного соединения;

Сведения об ошибках.

Имеющая фиксированную длину полезная нагрузка ячейки отличается реальных данных, содержащихся в пакете. В зависимости от протокола, Л кеты содержат данные переменной длины, которая кратна байту (8 битам) Например, данные в пакете распространенного стандарта Ethernet может иметь длину от нескольких сот до нескольких тысяч бит.

При асинхронном режиме передачи (asynchronous transfer mode, ATM) данные в ячейке всегда имеют длину 384 бита. Технология ATM (подробно описываемая в главе 8) представляет собой метод передачи данных, в котором ячейки и множество каналов используются для пересылки речевых сигналов, видео и данных в локальных и глобальных сетях. Фиксированная длина позволяет более точно синхронизировать передачу данных и обеспечить высокие скорости коммуникаций и качество обслуживания (Quality of Serve QoS). Качество обслуживания количественно описывает качество передачи данных, пропускную способность и надежность сетевой системы. Некоторые производители и телекоммуникационные компании предлагают для своих систем или оборудования гарантированное качество обслуживания.

В первую очередь ячейки используются в сетях ATM, поэтому интерфейсы данных состоят из коммутаторовATM, интерфейсов подключаемых устройств (AUI) и оптоволоконного кабеля. В составAUI-интерфейса входят приемопередатчик и сетевые драйверы, построенные по тем же принципам, что и драйверы для сетевых адаптеров, однако ориентированные на соединения по коаксиальному кабелю, витой паре или оптоволокну.

Согласно спецификациям ATM Forum и TIA Fiber Division, LAN Section, для передачи ячеек в магистралях локальных сетей, работающих на скорости 622 Мбит/с и на расстояниях до 500 м, требуется одномодовый оптоволоконный кабель. Многомодовый кабель с полосой пропускания 500 МГц на 1 км является наиболее выгодным решением для резервных магистралей, обеспечивающих скорость до 100 Мбит/с на расстоянии до2000 м. Следовательно, наилучшая конструкция кабельной системы, удовлетворяющаяся современным и будущим требованиям к резервным магистралям, представляет собой комбинацию многомодовых (62,5/125FDDI Grade) и одномодомовых оптических кабелей. Такие решения можно рассматривать как пример комбинированной кабельной системы.

Обычно кабельная магистраль содержит от 18 до 48 многомодовых оптических кабелей. При добавлении от 6 до 12 одномодовых кабелей (имеющих чрезвычайно высокие показатели полосы пропускания) можно обеспечить совместимость с будущими высокоскоростными приложениями. Свободные (или темные) оптические кабели можно оставить не разведенными до тех пор, пока в них не появится необходимость. В большинстве проектов затраты на установку избыточных кабелей невелики по сравннию с общими расходами на монтаж и намного меньше, чем затраты на установку дополнительных кабелей в будущем.