Что понимается под интерфейсом передачи данных. Основы интерфейсов последовательной передачи данных

Домофонные ключи есть в кармане у каждого. Разбираемся, как они работают и могут ли размагнититься, а также существует ли один ключ от всех дверей.

Виды ключей для домофонов

Существует несколько семейств домофонных ключей.

1. «Таблетки». Официально стандарт называется Touch memory (ТМ) или iButton, это контактные ключи в корпусе MicroCAN. В «таблетках» используется протокол 1-Wire, но форматы бывают разные.

В РФ это в основном ключи модели Dallas, с которыми работают домофоны Vizit, Eltis, Z-5R, С2000-2 и т.д., Cyfral (ключи DC2000А и Цифрал-КП1 и др.), «Метаком».

Довольно редко встречаются резистивные «таблетки» – у них считывается сопротивление.

2. «Капельки» . RFID-метки в пластиковом корпусе круглой, овальной или каплеобразной формы. Иногда их выпускают в виде браслетов или карт.

Внутри – RFID-метка, как и в картах метро, «пищалках» на товарах в супермаркетах и других подобных штуках. В основном «капельки» могут быть ближнего действия (Proximity, считываться на расстоянии до 10-15 см), так как более «дальнобойные» метки Vicinity, которые работают на расстоянии до 1 м, небезопасны в данном случае.

В РФ чаще всего используют Proximity-ключи EM-Marin, но встречаются также и более старые HID-метки или более новые MiFare, как в картах метро.

3. Оптические . Настоящие динозавры. Где-то в провинциях ещё сохранились. Такой ключ – это металлическая пластина, в которой в определенном порядке насверлены отверстия.

Внутри домофона есть фотоэлемент, который распознает, в том ли порядке насверлены дыры.

Безопасность ниже плинтуса, подделать ключ – плевое дело, а некоторые домофоны с оптическими ключами успешно и без следов вскрывались пилочкой для ногтей.

Как домофон определяет, подходит ли ключ?

На заводе или на фирме, которая устанавливает домофоны, в каждый ключ записывают особый код . Затем его же сохраняют в памяти домофона.

Когда вы подносите ключ к домофону, он считывает код и сравнивает его со значениями из своей памяти. Если значение ключа там есть, дверь открывается.

Кстати, можно открывать несколько домофонов одним ключом . Нужно лишь прописать код этого ключа во все нужные домофоны. Понятно, что домофоны должны быть совместимы с ключом.

Более того, есть специальные модули, которые позволяют сохранить все ключи из одного домофона и перенести их в другой.

Вот так переустановят домофон у вас в подъезде, а ключи менять не придётся. Хотя, конечно, установщик домофона вполне может попытаться заработать на этом.

Исключение, пожалуй, лишь ключи MiFare . Они включают перезаписываемую область памяти, в которую копируется уникальный код домофона.

Когда мастер «из ларька» клонирует такой ключ, он копирует только заводской код, но не код домофона. В результате домофон может отвергнуть такой ключ – сработает система защиты от клонов. Скопировать заводской код сможет лишь обслуживающая компания.

Как делают копию ключа?

Обычно для этого берут болванку – пустую заготовку без кода . Затем мастер считывает код с вашего ключа и записывает его же на болванку.

В результате вы получаете два одинаковых ключа. А так как код оригинального ключа уже сохранен в домофоне, то и его клон позволит открыть дверь .

Болванки бывают перезаписываемые и неперезаписываемые. Если вы помните слово «финализация» при прожиге дисков, возьмите с полки пирожок , то здесь оно тоже применяется.

Технически вы сами можете собрать дубликатор (программатор) ключей на основе Arduino или Raspberry Pi, а затем наделать копий ключа на все случаи жизни. Инструкций в интернете полно, как и предложений купить дубликатор за тысячу-другую рублей.

Главное – не промахнуться с типом домофона и ключа.

Так, одни ключи рассчитаны на частоту 125 КГц , другие на 13,56 МГц и так далее. К тому же они могут быть разного типа. Помните о защите от клонов, которая может поддерживаться вашим домофоном.

Могут ли ключи размагнититься?

Бывает, носишь «таблетку» или «капельку» в кармане, а она через какое-то время бац! – и перестала работать. И такая ерунда каждый месяц. Что-то здесь не так. «Наверное, размагнитилось», – самое популярное объяснение.

На самом деле такие ключи не размагничиваются . В них даже магнита нет, да и обычные магниты ключам не страшны.

Дело скорее в банальном отсутствии контакта . Болванки дешевые, закупают их в Китае оптом по нескольку центов за штуку, так что контакт вполне может отойти, к примеру.

Корпусы ключей обычно не герметичны. Так что если ключ намокнет в кармане или часто будет находиться во влажной среде, долго он не прослужит.

Теоретически, ключи можно «убить» электромагнитным излучением или сильным электрическим импульсом.

К примеру, если вы положите ключ в микроволновку и включите на полную мощность или засунете в розетку, работать он перестанет. А вот мощный неодимовый магнит, вроде используемых в магазине для снятия меток, ключ вряд ли повредит.

Статическое электричество также ключам не на пользу. Если вы носите «таблетку» в заднем кармане и часто приседаете, отчего синтетическая ткань трется о ключ, он также прослужит недолго.

Наконец, от частого использования «таблетка» может банально продавиться в противоположную сторону и перестанет контактировать с домофоном. Просто вдавите её обратно, и всё пройдёт.

Что такое мастер-ключ и где его взять?

После установки домофона у специалиста остается особый ключ. На нем даже может быть написано что-то вроде: «Мастер-ключ. Никому не давать».

Но этот ключ обычно сам дверь открыть не может . Он нужен, чтобы добавлять в память новые ключи. В домофоне код мастер-ключа хранится в особой области, чтобы устройство могло отличать его и реагировать соответствующим образом.

Понятное дело, простым смертным мастер-ключ не дают. Иначе обслуживающая компания не смогла бы брать деньги за добавление записей о новых ключах в домофон.

Но возможна ситуация, когда мастер-ключ подходит к нескольким домофонам. Или когда для одних домофонов «таблетка» – это мастер-ключ, а для других – обычный ключ, который открывает двери.

Здесь всё зависит не от ключа, а от того, какие записи есть в памяти домофона.

А что будет, если мастер-ключ потеряется ?

Обычно в домофонах остается возможность прописать новый мастер-ключ. Это, конечно, потенциальная возможность для взлома. Но, говоря объективно, проще попасть в подъезд, представившись сантехником, чем что-то взламывать.

Интереснее иметь универсальный ключ, или «вездеход». Его код прописан во всех домофонах подъездов одного дома или двора.

«Вездеходы» делают для почтальонов, сотрудников коммунальных служб, мастеров и др. Согласитесь, это куда удобнее, чем таскать с собой гирлянду разных ключей.

Также некоторые RFID-ключи нового формата, к примеру, RF3.1, позволяют записать коды до 8 домофонов.

Часто домофоны также поддерживают блокирующие ключи . Это средство безопасности: после того, как дверь открывают блокирующим ключом, другие ключи не работают, а дверь блокируется. Снять блокировку может либо мастер-ключ, либо блокирующий ключ (всё зависит от настроек домофона).

Кстати, бывает, что ключ устанавливают блокирующим по ошибке . Так что если после вас соседи часто не могут попасть в подъезд, проверьте, не блокирует ли ваш ключ доступ.

Можно ли обмануть домофон?

Да, сейчас можно купить эмулятор , который имитирует ключи разных типов и выдает нужное значение для каждого домофона. В эмуляторах установлены даже дисплеи и клавиатура, что позволяет выбирать нужный ключ и выводить его название.

Штука забавная, стоит около 10 тыс. рублей. Но работает не без проблем – обходит не всю защиту, иногда может не срабатывать.

И да, сама по себе домофон она не взломает , лишь притворится копией нужного ключа. Для её программирования всё равно потребуются и сами ключи, которые уже известны домофоном, и устройство-дубликатор.

Часто можно услышать, что домофон можно вывести из строя электрошокером. Да, тонкая электроника серьёзный заряд действительно не перенесет. У механического удара на 10-15 см ниже панели домофона те же последствия. Но это порча имущества и статья УК РФ.

Теоретически ещё можно сильно дернуть дверь на себя. Но чтобы преодолеть силу, с которой магнит удерживает вторую часть замка, потребуется недюжинная мощь.

Некоторые домофоны под ключ-«таблетку» могут открываться с помощью батарейки «крона». Способ гуманный и безопасный для домофона, но срабатывает редко.

Можно ли открыть домофон смартфоном?

Да, сейчас на рынок постепенно заходят модели NFC-домофонов . Чаще их устанавливают в крупных офисах, реже – в жилых домах.

Если у вас такой вариант, ваш смартфон поддерживает NFC, а домофон работает на частоте 13,56 МГц , возможно, получится отказаться от ключей.

Но для MiFare, к примеру, в смартфоне должен также быть чип Secure Element, а их наличие даже в рамках одной модели смартфона часто отличается от рынка к рынку. Если чип всё же есть и остальные условия соблюдены, всё может получиться.

Есть также NFC-адаптеры , которые сделают из старого домофона новый и перспективный. Открывать дверь можно будет и «таблеткой», и смартфоном.

Интерфейс передачи данных говоря простым языком это своеобразный переходник между узлами, он знает, как передавать данные, что при этом использовать и чего ждать в ответ. А вот официальное определение уже звучит сложнее - это некая граница между двумя объектами или узлами, которые регламентируются особым принятым стандартом и реализуются с помощью установленных методов, средств и правил. Рассмотрим основные виды интерфейсов передачи данных.

Интерфейс Ethernet

С ним сталкивался практически каждый пользователь. Первоначальное его предназначение коммуникация между офисными устройствами. Для реализации первых соединений применялась линейная топология, и простой коаксиальный кабель. На сегодняшний момент данный подход уже устарел, да и наверное большинство пользователей удивляться как можно было компы соединить между собой коаксиальным кабелем, а раньше были такие сетевые карты. Сейчас в основе построения сетей используется топология «звезда», реализуемая и делимая на части маршрутизаторами и коммутаторами. По интерфейсу Ethernet можно передавать информацию со скоростью 10, 100, 1000 Мбит/сек. Одной из особенностей данного интерфейса является наличие MAC адреса, который вшит в аппаратную часть Вашей сетевой карты, приблизительно это как IMEI сотового телефона. С помощью него происходит распознавание того узла, который отправил и получил данные. Каждый MAC адрес уникален, достигается это тем, что разработчики устройств делят между собой общее множество значений. За тремя старшими байтами в MAC - адресе закреплен свой производитель.

Интерфейс USB

Также популярный интерфейс последовательной передачи данных USB (Universal Serial Bus). Все современные устройства оборудованы данным интерфейсом, главная его особенность в том, что используется технология Plung and Play. Означает это, что любое устройство с интерфейсом USB можно подключать и работать, в большинстве случаев избегая установки дополнительных драйвером. Например: флешки, переносные жесткие диски, клавиатуры, мыши и т. п. Одним из существенных плюсов USB подача питания на одном из контактов, что в свою очередь позволяет исключить дополнительный источник питания при подключении оборудования.

Интерфейс IrDA

Данный вид интерфейса уже практически устарел и многие даже не вспомнят его. А вот в недалеком прошлом без него практически невозможно было подключить первые сотовые телефоны к компьютеру. Его задача состояла в том, чтобы подключить то или иное оборудование с помощью инфракрасного излучения. Скорость передачи была очень низкой составляла всего 2400 - 115 200 bps, и ограничение нельзя было использовать на больших расстояниях. Как и упоминал выше, данный интерфейс в основном использовался в сотовых телефонах, но и компьютерная техника не исключение. На сегодняшний момент такую технологию применяют в пультах дистанционного управления различных устройств, например телевизоры, аудио-видео аппаратура и т. п.

Интерфейс HDMI

Данный интерфейс позволяет передавать медиа данные. Отличительной способность от старого интерфейса VGA, он позволяет передавать видео со звуком. Имеет большую пропускную способность и позволяет транслировать видео высокой четкости. Аббревиатура HDMI именно так и расшифровывается Hugh Definition Multimedia Interface.

Интерфейс Bluetooth

Он пришел на смену IrDA и сейчас активно используется во многих устройствах для создания связи между ними. Например: мышки, телефоны, ноутбуки, внешняя акустика и т. п. Производители заявляют радиус действия 100 метров, но на практике таких показателей добиться очень трудно, как правило составляет порядка 10 метров. Средняя скорость передачи данных составляет 3 Мбит/с.

Интерфейс Wi-Fi

Достаточно новый вид интерфейса, но уже завоевавший сердца многих пользователей. Основное его преимущество это беспроводное подключение. Используется практически во всех электронных устройствах, начиная от компьютеров, телевизоров и заканчивая лампочками и умными розетками. Технические характеристики постоянно улучшаются и усовершенствуются. Средняя скоро передачи составляет от 450 до 1300 Мбит/с.

В современном мире цифровых технологий их структура базируется на передаче информации между узлами и объектами определённой сети. Надёжность протоколов и способов, используемых при этом, зависит от того, каким образом реализована технология. В частности, это возложено на интерфейсы передачи данных.

Что это такое?

Как следует из официального определения, интерфейс передачи данных — это некая граница между двумя объектами или узлами, которые регламентируются особым принятым стандартом и реализуются с помощью установленных методов, средств и правил.

Говоря простым языком, это своеобразный переходник между узлами, который знает, как передавать данные, что при этом использовать и чего ждать в ответ.

Основные типы интерфейсов передачи данных

С одной из разновидностей сталкивался каждый пользователь компьютера. передачи данных Ethernet. Его первоначальное предназначение — коммуникация между офисными устройствами. Для реализации первых соединений применялась линейная топология, а также простой коаксиальный кабель. Сегодня же данный подход устарел. И теперь в основе сетей лежит топология «звезда», реализуемая и делимая на части маршрутизаторами и коммутаторами. В промышленных сетях по интерфейсу передачи данных Ethernet можно отправлять информацию со скоростями 10, 100 Мбит/с, и реже 1Гбит/с. Подобную производительность гарантирует такая передающая среда, как витая пара или оптоволокно.

Одной из особенностей интерфейса является наличие обязательного MAC адреса, который «вшит» в аппаратную часть оборудования. С помощью него происходит распознавание того узла, который отправил и получил данные. По сути, каждый адрес должен быть уникален. Для этого разработчики устройств делят между собой общее множество значений. За тремя старшими байтами в MAC адресе закреплён свой производитель.

Стоит отметить, что при регистрации MAC это происходит один раз при инициализации сетевого оборудования. Дальнейшее же хранение его ложится на плечи операционной системы. А это означает, что адрес в любой момент можно сменить.

USB

Ещё один часто встречающийся интерфейс последовательной передачи данных — Universal Serial Bus. Практически каждое современное устройство комплектуется той или иной его разновидностью, будь то микроверсия или мини.

Его главной особенностью является использование технологии Plug and Play. Это означает, что любое устройство с интерфейсом USB можно подключить и начать работать, в большинстве случаев избегая установки различных драйверов.

Также особым рядом идёт приведение многих разношёрстных разъёмов и стандартов к одному общему виду. Теперь можно присоединять к компьютеру джойстики, мыши, клавиатуры, жёсткие диски, принтеры и многое другое оборудование, используя один универсальный разъем.

Стоит отметить ещё один плюс USB — подачу питания на одном из контактов. Это позволило подключать внешние жёсткие диски и подобные устройства.

HDMI

Это тоже интерфейс передачи данных, позволяющий передавать медиаданные. В отличие от устаревшего VGA, он может работать не только с видео, но и со звуком. Данный стандарт обладает большой пропускной способностью. Поэтому он применяется для трансляции видео высокой чёткости. Кстати, аббревиатура HDMI именно так и расшифровывается — High Definition Multimedia Interface. Что означает интерфейс для мультимедиа высокой чёткости.

IrDA

Статья была бы не полной без описания интерфейсов передачи данных, позволяющих делать это беспроводным путем. И наверное, IrDA — первопроходец среди них.

Возможно, морально и технически он уже устарел, однако до сих пор встречается на самых разных архаичных устройствах. Его задача — соединить два аппарата с IrDA с помощью инфракрасного излучения. Ограничения стандарта не позволяют использовать его на больших расстояниях. Поэтому для передачи данных, например, между двумя телефонами, приходилось держать их на близком расстоянии друг от друга. Скорость передачи была очень низкой и находилась в диапазоне от 2400 до 115 200 bps.

Bluetooth

Bluetooth пришёл на смену инфракрасному порту и активно используется во многих устройствах для создания связи между ними. Это компьютерные мыши, телефоны, ноутбуки и много других устройств.

Радиус действия интерфейса официально заявлен в 100 метров. Однако на практике, наличие шумов и различных препятствий в виде стен сужают расстояние примерно до 10 метров. Средняя скорость передачи данных по интерфейсу Bluetooth составляет не более 3 Мбит/с.

Wi-Fi

Наверное, нет такого человека, который бы не слышал о данном интерфейсе передачи данных, позволяющем передавать информацию на больших скоростях и на удобных расстояниях.

Основное преимущество стандарта — беспроводное подключение. А это значительная экономия как пространства, так и денежных затрат на кабели и инфраструктуру.

Повсеместное распространение Wi-Fi привело к тому, что с ним поставляются сегодня даже лампочки. То есть интерфейс стал одним из самых популярных. С ним сталкиваются все при покупке нового устройства, будь то телевизор, смартфон или ноутбук.

Технические характеристики Wi-Fi постоянно улучшаются. Теоретически в идеальных условиях он может передавать данные со скоростью до 7 Гбит/с. Средняя же на обычных бытовых устройствах варьируется в пределах от 450 до 1300 Мбит/с при использовании нескольких антенн.

Минусы Wi-Fi

Несмотря на множество преимуществ, у интерфейса имеются и недостатки. Например, большинство устройств способно работать на частоте 2,4 ГГц. Однако многие средства а также некоторые бытовые приборы тоже имеют такой показатель. А это значительно влияет на качество передачи данных, что, в свою очередь, сказывается и на скорости. Однако в последних моделях устройств данную проблему уже решили путем добавления дополнительной рабочей частоты в 5 ГГц.

В России имеются небольшие проблемы с установкой адаптеров Wi-Fi, показатель электромагнитного излучения которых превышает 100 мВт, так как нужно их обязательно регистрировать.

Лекция 4 Типы интерфейсов данных

Лекция 4

Тема: Типы интерфейсов данных

Данные в сетях передаются в виде пакетов или ячеек. Сначала использовалась передача пакетов, которая до сих пор остается наиболее распространенным методом передачи данных в локальных сетях. Передача ячеек (пакетов фиксированной длины) позволяет строить высокоскоростные каналы между локальными и глобальными сетями. Для каждого метода передачи необходимы специальные интерфейсы, управляющие сетевыми коммуникациями на физическом уровне. В следующих разделах описываются и сравниваются используемые в сетях пакеты и ячейки, а также предназначение для них интерфейсы.

Передача пакетов

Данные передаются от узла к узлу в виде больших фрагментов, называемых пакетами или фреймами. Коммуникационное программное обеспечение каждого узла разбивает данные на такие фрагменты. В зависимости от передающей среды, фрагмент данных преобразуется в электрический, радио- или световой сигнал, который и может быть передан между узлами. Требуется много пакетов данных, чтобы передать страницу текста или файл.

Формат пакетов определяется используемым в сети протоколом. Например, протокол определяет способ указания адреса узла, посылающего пакет, адреса принимающего узла, типа передаваемых данных, размера пакета, объёма передаваемых данных и метода обнаружения поврежденных пакетов или коммуникационных ошибок. Другой важной частью пакета является синхронизирующая информация для передачи множества пакетов, позволяющая отсылать пакеты через заданные интервалы времени. На рис.1 показан общий формат пакета.

Для физической передачи пакетов в сеть служит карта сетевого интерфейса, или сетевой адаптер (networkinterface card, NIC). Сетевой адаптер позволяет подключить рабочую станцию, файл-сервер, принтер или другое устройство к сетевой передающей среде, например, к коаксиальному кабелю или витой паре. На одном конце адаптера располагается разъем (или коннектор), соответствующий типу сетевой среды.

Сетевой адаптер является приемопередатчиком, обеспечивающим канал передачи данных в сетевой среде. Его встроенные средства упаковывают во фрейм заголовок, исходный и целевой адреса, данные и хвостовик, а фрейм в виде законченного пакета передается в коммуникационную среду. Сетевой адаптер имеет алгоритмы для приема, распаковки, передачи и синхронизации данных, а также для управления конфликтами и ошибками. Программные алгоритмы, реализующие эти функции, хранятся в исполняемых и служебных файлах, называемых сетевыми драйверами. Для каждого сетевого адаптера необходимы определенные сетевые драйверы, соответствующие методу доступа к сети, формату инкапсуляции данных, типу кабельной системы и физической (MAC) адресации. В программных драйверах реализуются стандарты многоуровневых сетевых коммуникаций, заданные эталонной моделью OSI. Драйверы позволяют сетевому адаптеру выполнять передачу данных на Физическом (Уровень 1) и Канальном (Уровень 2) уровнях.

Передача ячеек

Обычно ячейка (cell) содержит фрагмент данных фиксированной длины в формате, пригодном для передачи с большими скоростями - от 155 Мбит/с до 1 Гбит/с и выше. Как показано на рис. 2 ячейка имеет заголовок(header), в котором содержится следующая информация:

Данные для управления потоком, координирующие передачу информации между исходным и целевым узлами;

Информация о маршруте и канале, позволяющая передавать данные по кратчайшему маршруту;

Признак, указывающий на то, содержит ли ячейка реальные данные или управляющую информацию для осуществления высокоскоростного соединения;

Сведения об ошибках.

Имеющая фиксированную длину полезная нагрузка ячейки отличается реальных данных, содержащихся в пакете. В зависимости от протокола, Л кеты содержат данные переменной длины, которая кратна байту (8 битам) Например, данные в пакете распространенного стандарта Ethernet может иметь длину от нескольких сот до нескольких тысяч бит.

При асинхронном режиме передачи (asynchronous transfer mode, ATM) данные в ячейке всегда имеют длину 384 бита. Технология ATM (подробно описываемая в главе 8) представляет собой метод передачи данных, в котором ячейки и множество каналов используются для пересылки речевых сигналов, видео и данных в локальных и глобальных сетях. Фиксированная длина позволяет более точно синхронизировать передачу данных и обеспечить высокие скорости коммуникаций и качество обслуживания (Quality of Serve QoS). Качество обслуживания количественно описывает качество передачи данных, пропускную способность и надежность сетевой системы. Некоторые производители и телекоммуникационные компании предлагают для своих систем или оборудования гарантированное качество обслуживания.

В первую очередь ячейки используются в сетях ATM, поэтому интерфейсы данных состоят из коммутаторовATM, интерфейсов подключаемых устройств (AUI) и оптоволоконного кабеля. В составAUI-интерфейса входят приемопередатчик и сетевые драйверы, построенные по тем же принципам, что и драйверы для сетевых адаптеров, однако ориентированные на соединения по коаксиальному кабелю, витой паре или оптоволокну.

Согласно спецификациям ATM Forum и TIA Fiber Division, LAN Section, для передачи ячеек в магистралях локальных сетей, работающих на скорости 622 Мбит/с и на расстояниях до 500 м, требуется одномодовый оптоволоконный кабель. Многомодовый кабель с полосой пропускания 500 МГц на 1 км является наиболее выгодным решением для резервных магистралей, обеспечивающих скорость до 100 Мбит/с на расстоянии до2000 м. Следовательно, наилучшая конструкция кабельной системы, удовлетворяющаяся современным и будущим требованиям к резервным магистралям, представляет собой комбинацию многомодовых (62,5/125FDDI Grade) и одномодомовых оптических кабелей. Такие решения можно рассматривать как пример комбинированной кабельной системы.

Обычно кабельная магистраль содержит от 18 до 48 многомодовых оптических кабелей. При добавлении от 6 до 12 одномодовых кабелей (имеющих чрезвычайно высокие показатели полосы пропускания) можно обеспечить совместимость с будущими высокоскоростными приложениями. Свободные (или темные) оптические кабели можно оставить не разведенными до тех пор, пока в них не появится необходимость. В большинстве проектов затраты на установку избыточных кабелей невелики по сравннию с общими расходами на монтаж и намного меньше, чем затраты на установку дополнительных кабелей в будущем.