Условия всасывания продуктов переваривания липидов. Переваривание липидов в желудочно-кишечном тракте: роль гормонов, ферментов, желчных кислот

Лекция «ОБМЕН ЛИПИДОВ»

ПРЕВРАЩЕ НИЯ ЛИПИДОВ В ПРОЦЕССЕ ПИЩЕВАРЕНИЯ

Липиды, представляющие большую биологическую ценность для организма человека (триацилглицерины, фосфолипиды, холестерин и др.), поступают в него как компоненты пищи биологического происхождения.

Для переваривания липидов в желудочно-кишечном тракте необходимыми являются следующие условия:

    наличие гидролизующих липиды липолитических ферментов ;

    оптимальное для проявления высокой каталитической активности липолитических ферментов значение рН среды (нейтральное или слабощелочное);

    наличие эмульгаторов.

Все перечисленные условия создаются в кишечнике человека. Слюнные железы не способны продуцировать ферменты, гидролизующие жиры, вследствие чего в ротовой полости заметного переваривания жиров не происходит. В желудке взрослого человека переваривания жиров также не происходит, так как рН желудочного сока близок к 1,5, а оптимум рН среды для действия желудочного липолитического фермента - липазы находится в пределах 5,5-7,5. Следует отметить, что рН желудочного сока у новорожденных детей составляет около 5,0, что способствует перевариванию эмульгированных триацилглицеринов молока желудочной липазой. В кишечнике происходит нейтрализация соляной кислоты желудочного сока бикарбонатами кишечного сока и эмульгирование жиров. Эмульгирование липидов осуществляется выделяющимися в процессе нейтрализации пузырьками СО2 с участием натриевых или калиевых солей желчных кислот - холевой, 7-дезоксихолевой, глицинхолевой, таурохолевой и других в качестве поверхностно-активных веществ. Желчные кислоты поступают в кишечник из желчного пузыря в составе желчи. Эмульгированию способствуют также соли жирных кислот (мыла), образующиеся при гидролизе липидов. Но основная роль поверхностно-активных веществ в эмульгировании жиров принадлежит желчным кислотам.

Анионы желчных кислот резко уменьшают поверхностное натяжение на границе раздела фаз жир - вода, стабилизируют образовавшуюся эмульсию и образуют с жирными кислотами транспортный комплекс, в составе которого осуществляется их всасывание в стенки кишечника. Кроме того, желчные кислоты выполняют функцию активаторов липолитических ферментов.

Триацилглицерины, составляющие основную массу липидов пищи, гидролизуются под действием панкреатической липазы, которая поступает в кишечник в неактивном виде, а затем активируется желчными кислотами. Активная липаза имеет гидратированный гидрофильный участок и гидрофобную головку, контактирующую с триацилглицеринами на поверхности раздела фаз, где и происходит постадийный гидролиз:

В ходе гидролиза на первых стадиях быстро гидролизуются сложноэфирные связи 1 и 3, а затем медленно идет гидролиз 2-моноацилглицерина. Образующийся 2-моноацилглицерин затем может всасываться стенкой кишечника, и использоваться на ресинтез специфических для данного вида организмов триацилглицеринов (см. ниже).

В гидролизе фосфолипидов принимают также участие фосфолипазы. Поступающие с пищей эфиры холестерина, которыми богаты некоторые продукты (желток яиц, сливочное масло, икра и др.), гидролизуются холестеролэстеразой до свободного холестерина и жирных кислот. Холестеролэстераза проявляет свою активность только в присутствии желчных кислот.

Продукты гидролитического расщепления всех пищевых липидов всасываются в кишечнике. Глицерин и жирные кислоты с короткой углеродной цепью (до 10-12 атомов С) хорошо растворимы в воде и переходят в кровь в виде водного раствора. Длинноцепочечные жирные кислоты (более 14 атомов С) и моноацилглицерины не растворимы в воде, поэтому всасываются при участии желчных кислот, фосфолипидов и холестерина, образующих в кишечнике смесь состава 12,5: 2,5: 1,0, соответственно. В результате формируются мицеллы из продуктов гидролиза липидов, окруженных гидрофильной оболочкой из холестерина, фосфолипидов и желчных кислот. В последующем мицеллы распадаются, желчные кислоты снова возвращаются в кишечник, совершая 5-6 таких циклов ежесуточно.

Липиды, прежде чем поступить в лимфу, в кишечной стенке подвергаются ресинтезу, т.е. превращению в триацилглицерины. Важность этого процесса заключается в том, что вновь синтезированные специфические жиры отличаются по физико-химическим показателям от пищевых липидов и наиболее пригодны для данного организма. Поскольку все различия в составе триацилглицеринов определяются составом жирных кислот, то при ресинтезе липидов используются собственные жирные кислоты с длинной цепью, которые синтезируются в кишечнике из предшественников (лишь часть всосавшихся жирных кислот пригодна для ресинтеза). Жирные кислоты образуют ацил-КоА, а затем ацильные остатки переносятся на моноацилглицерин при участии трансацилаз, с последовательным образованием из моноацилглицерина ди- и триацилглицеринов.

Транспорт холестерина и ресинтезированных липидов осуществляется в составе липопротеинов, белковая часть которых (аполипопротеина) придает им растворимость в водных средах.

Основные метаболические пути жирных кислот, образующиеся при гидролизе триацилглицеринов пищи, представлены на рисунке.

Внутриклеточный гидролиз липидов

В тканях происходит непрерывное обновление липидов. Период полупревращения триацилглицеринов, играющих важную энергетическую роль в организме, колеблется от 2 до 18 суток. Другие липиды (фосфо-, сфинго-, гликолипиды и холестерин) преимущественно выполняют роль компонентов биологических мембран и обновляются менее интенсивно. Обновление липидов требует их предварительного внутриклеточного ферментативного гидролиза - липолиза.

Принято считать, что триацилглицерины выполняют в обмене липидов роль, аналогичную той, которую выполняет гликоген в обмене углеводов, а высшие жирные кислоты по своей энергетической ценности напоминают глюкозу. При физической нагрузке и других состояниях организма, требующих повышенных энергетических затрат, увеличивается потребление триацилглицеринов жировой ткани как энергетического резерва. Однако в качестве источника энергии могут использоваться только свободные жирные кислоты. Поэтому триацилглицерины сначала гидролизуются до глицерина и свободных жирных

кислот под действием специфических тканевых липаз. Этот процесс контролируется центральной нервной системой и запускается с помощью ряда гормонов (адреналин, норадреналин и др.), которые активируют гормоночувствительную триацилглицеринлипазу. Триацилглицеринлипаза расщепляет триацилглицерин на диацилглицерин и жирную кислоту. Затем при действии ди- и моноацилгли- церинлипаз происходит дальнейший липолиз до глицерина и жирных кислот.

Образующийся в результате липолиза глицерин может участвовать в глюконеогенезе или включаться в гликолиз с предварительным образованием глицерол-3-фосфата под действием глицеролкиназы и при участии АТФ:

Затем под действием дегидрогеназы глицерол-3-фосфат превращается в трио- зофосфаты, которые, собственно, и вовлекаются в глюконеогенез или гликолиз.

Жирные кислоты в составе белкового комплекса с альбумином крови поступают в клетки различных тканей и органов, где подвергаются окислению.

Биоокисление жирных кислот

Окисление жирных кислот в организмах - чрезвычайно важный процесс, он может протекать по α-, β- и ω-углеродным атомам жирных кислот. Основной путь окисления жирных кислот как в животных, так и в растительных тканях - это β-окисление.

β-Окисление жирных кислот. β-Окисление жирных кислот было впервые изучено в 1904 г. Ф. Кноопом. В дальнейшем было установлено, что β- окисление осуществляется только в митохондриях. Благодаря работам Ф. Линена с сотрудниками (1954-1958 гг.) были выяснены основные ферментативные процессы окисления жирных кислот. В честь ученых, открывших данный путь окисления жирных кислот, процесс β-окисление получил название цикла Кноопа-Линена.

По современным представлениям, процессу окисления жирных кислот предшествует их активация в цитоплазме с участием ацил-КоА-синтетазы и с использованием энергии АТФ:

В форме ацил-КоА жирные кислоты поступают в митохондрии, в матриксе которых они подвергаются β-окислению, включающему последовательность нижеприведенных ферментативных окислительно-восстановительных реакций.

Первой реакцией на пути расщепления жирных кислот является дегидрирование с образованием транс-2,3-ненасыщенных производных, катализируемое различными ФАД-содержащими ацил-КоА-дегидрогеназами:

Вторая реакция - гидратация двойной связи - катализируется еноил-КоА - гидратазой:

На следующей (третьей) стадии происходит дегидрирование спиртового фрагмента, которое осуществляется соответствующей дегидрогеназой и окисленной формой кофермента НАД:

В результате окисления образуется β-оксокислота, из-за чего весь процесс в целом и получил название β-окисления.

Четвертая, последняя реакция, катализируемая тиолазой, сопровождается окислительно-восстановительным расщеплением связи С α -С β с отщеплением ацетил-КоА и присоединением остатка КоА по месту разрыва межуглеродной связи:

Эта реакция носит название тиолиза и является высоко экзергонической, поэтому равновесие в ней всегда смещено в сторону образования продуктов.

Последовательное повторение этого цикла реакций приводит к полному распаду жирных кислот с четным числом атомов углерода до ацетил-КоА. В результате этого процесса образуются ацетил-КоА, ФАДН 2 и НАД-Н. Далее ацетил-КоА вступает в цикл Кребса, а восстановленные коферменты - в дыхательную цепь.

Особенности окисления жирных кислот с нечетным числом углеродных атомов заключается в том, что наряду с обычными продуктами окисления, образуется одна молекула СН 3 -СН 2 -СО~SКоА (пропионил-КоА), которая в процессе карбоксилирования переводится в сукцинил-КоА, поступающий в цикл Кребса.

Особенности окисления ненасыщенных жирных кислот определяются положением и числом двойных связей в их молекулах. До места двойной связи ненасыщенные жирные кислоты окисляются так же, как и насыщенные. Если двойная связь имеет ту же транс-конфигурацию и расположение, что и еноил-КоА, то далее окисление идет по обычному пути. В противном случае в реакциях участвует дополнительный фермент, который перемещает двойную связь в нужное положение и изменяет конфигурацию молекулы кислоты.

При β-окислении жирных кислот выделяется большое количество энергии. При полном окислении одного моля жирной кислоты, содержащей 2n атомов углерода, образуется n молей ацетил-КоА и (n-1) молей (ФАДН 2 + НАДН). Окисление ФАДН 2 дает 2АТФ, а при окислении НАДН образуется 3АТФ. Полное сгорание одного моля ацетил-КоА приводит к образованию 12 молей АТФ.

С учетом того, что 1 моль АТФ затрачивается на активацию жирной кислоты, баланс АТФ при полном окислении жирной кислоты с четным числом атомов углерода можно выразить следующей формулой:


Например, моль пальмитиновой кислоты, содержащая 16 атомов углерода, при окислении дает 130 молей АТФ. Таким образом, энергетическая ценность жирных кислот намного выше, чем глюкозы. Однако в процессе окисления глюкозы образуется оксалоацетат, который облегчает включение ацетильных остатков жирных кислот в цикл Кребса. В связи с этим, в биохимической литературе бытует выражение, что «жиры сгорают в пламени углеводов».

Для удобства восприятия цикл β-окисления жирных кислот схематично представлен на рисунке.

α-Окисление жирных кислот. Наряду с β-окислением жирные кислоты с достаточно большим числом атомов углерода (С13-С18) могут подвергаться α- окислению. Этот тип окисления особенно характерен для растительных тканей, но может происходить и в некоторых тканях животных. α-Окисление имеет циклический характер, причем цикл состоит из двух реакций.

Первая реакция заключается в окислении жирной кислоты пероксидом водорода в соответствующий альдегид и СО2 с участием специфической пероксидазы:

В результате этой реакции углеводородная цепь укорачивается на один атом углерода.

Суть второй реакции заключается в гидратации и окислении образовавшегося альдегида в соответствующую карбоновую кислоту под действием альдегиддегидрогеназы, содержащей окисленную форму кофермента НАД:

Затем цикл α-окисления повторяется снова. В сравнении с β-окислением α- окисление энергетически менее выгодно.

Затем ω-оксокислота окисляется в ω-дикарбоновую кислоту под действием соответствующей дегидрогеназы:

ω-Окисление жирных кислот. В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление жирных кислот, т.е. окисление по концевой СН 3 -группе, обозначаемой буквой ω. Сначала под действие монооксигеназы происходят гидроксилирование с образованием ω-оксикислоты:

Полученная таким образом ω-дикарбоновая кислота укорачивается с любого конца с помощью реакций β-окисления.

Роль липидов в питании

Липиды являются обязательной составной частью сбалансированного пищевого рациона человека. Принято считать, что при сбалансированном питании соотношение белков, липидов и углеводов в пищевом рационе составляет примерно 1: 1: 4. В среднем в организм взрослого человека с пищей ежесуточно поступает около 80 г жиров животного и растительного происхождения. В пожилом возрасте, а также при малой физической нагрузке потребность в жирах снижается, в условиях холодного климата и при тяжелой физической работе - увеличивается.

Значение жиров как пищевого продукта весьма многообразно. Прежде всего жиры в питании человека имеют важное энергетическое значение. Высокая калорийность жиров по сравнению с белками и углеводами придает им особую пищевую ценность при расходовании организмом больших количеств энергии. Известно, что 1 г жиров при окислении в организме дает 38,9 кДж (9,3 ккал), тогда как 1 г белка или углеводов - 17,2 кДж (4,1 ккал). Следует также помнить, что жиры являются растворителями витаминов A, D, Е и др., в связи с чем обеспеченность организма этими витаминами в значительной степени зависит от поступления жиров в составе пищи. Кроме того, с жирами в организм вводятся некоторые полиненасыщенные кислоты (линолевая, линоленовая, арахидоновая), которые относят к категории незаменимых жирных кислот, ибо ткани человека и ряда животных потеряли способность синтезировать их. Эти кислоты условно объединены в группу под названием "витамин F".

Наконец, с жирами организм получает комплекс биологически активных веществ, таких, как фосфолипиды, стерины и др., играющих важную роль в обмене веществ.

Переваривание и всасывание липидов

Расщепление жиров в желудочно-кишечном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений, поскольку содержащаяся в небольшом количестве в желудочном соке взрослого человека и млекопитающих липаза малоактивна. Величина pH желудочного сока около 1,5, а оптимальное значение pH для желудочной липазы находится в пределах 5,5-7,5. Кроме того, липаза может активно гидролизовать только предварительно эмульгированные жиры, в желудке же отсутствуют условия для эмульгирования жиров.

Переваривание жиров в полости желудка играет важную роль в процессе пищеварения у детей, особенно грудного возраста. Известно, что pH желудочного сока у детей грудного возраста около 5,0, что способствует перевариванию эмульгированного жира молока желудочной липазой. К тому же есть основания полагать, что при длительном употреблении молока в качестве основного продукта питания у детей грудного возраста наблюдается адаптивное усиление синтеза желудочной липазы.

Хотя в желудке взрослого человека не происходит заметного переваривания жиров пищи, все же в желудке отмечается частичное разрушение липопротеидных комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, незначительное расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, поступая в кишечник, способствуют эмульгированию там жиров.

Расщепление жиров, входящих в состав пищи, происходит у человека и млекопитающих преимущественно в верхних отделах тонкого кишечника, где имеются весьма благоприятные условия для эмульгирования жиров.

После того как химус попадает в двенадцатиперстную кишку, здесь прежде всего происходит нейтрализация соляной кислоты желудочного сока, попавшей в кишечник с пищей, бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. Наиболее мощное эмульгирующее действие на жиры, несомненно, оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей, большая часть которых конъюгирована с глицином или таурином. Желчные кислоты представляют собой основной конечный продукт обмена холестерина.

Главные стадии образования из холестерина желчных кислот, в частности холевой кислоты, можно представить в следующем виде. Процесс начинается с гидроксилирования холестерина в 7-м α-положении, т. е. с включения гидроксильной группы в положении 7 и образования 7-гидроксихолестерина. Затем через ряд стадий образуется 3,7,12-тригидроксикопростановая кислота, боковая цепь которой подвергается β-окислению. В завершающей стадии отделяется пропионовая кислота (в виде пропионил-КоА) и боковая цепь укорачивается. Во всех этих реакциях принимает участие большое количество ферментов и коферментов печени.

По своей химической природе желчные кислоты являются производными холановой кислоты. В желчи человека в основном содержится холевая (3,7,12-триоксихолановая), дезоксихолевая (3,12-дигидроксихолано- и хенодеэоксихолевая (3,7-дигидроксихолановая) кислоты.

Кроме того, в желчи человека в малых (следовых) количествах содержится литохолевая (3-гидроксихолановая) кислота, а также аллохолевая и уреодезоксихолевая кислоты - стереоизомеры холевой и хенодезоксихолевой кислот.

Как уже отмечалось, желчные кислоты присутствуют в желчи в конъюгированной форме, т. е. в виде гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой (около 2/3-4/3 всех желчных кислот) или таурохолевой, тауродезоксихолевой и таурохенодезоксихолевой (около 1/5-1/3 всех желчных кислот). Эти соединения иногда называют парными, так как они состоят из двух компонентов - из желчной кислоты и глицина или же желчной кислоты и таурина.

Заметим, что соотношения между конъюгатами этих двух видов могут меняться в зависимости от характера пищи: в случае преобладания в ней углеводов увеличивается относительнее содержание глициновых конъюгатов, а при высокобелковой диете - тауриновых конъюгатов. Строение этих конъюгатов может быть представлено в следующем виде:

Считается, что только комбинация: соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид способна дать необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

Желчные кислоты выполняют также важную роль в качестве своеобразного активатора панкреатической липазы 1 , под влиянием которой происходит расщепление жира в кишечнике. Вырабатываемая в поджелудочной железе липаза расщепляет триглицериды, находящиеся в эмульгированном состоянии. Считают, что активирующее влияние желчных кислот на липазу выражается в смещении оптимума действия данного фермента с pH 8,0 до 6,0, т. е. до той величины pH, которая более постоянно поддерживается в двенадцатиперстной кишке в ходе переваривания жирной пищи. Конкретный же механизм активации липазы желчными кислотами пока неясен.

1 Однако существует мнение, что активация липазы происходит не под влиянием желчных кислот. В соке поджелудочной железы присутствует предшественник липазы, который активируется в просвете кишки путем образования комплекса с колипазой (кофактором) в молярном соотношении 2: 1. Это способствует сдвигу оптимума pH с 9,0 до 6,0 и предотвращению денатурации фермента. Установлено также, что на скорость катализируемого липазой гидролиза не оказывает существенного влияния ни степень ненасыщенности жирных кислот, ни длина углеводородной цепи (от С 12 до С 18). Ионы кальция ускоряют гидролиз главным образом потому, что они образуют нерастворимые мыла с освобождающимися жирными кислотами, т. е. практически сдвигают реакцию в направлении гидролиза.

Есть основания считать, что существует панкреатическая липаза двух типов: одна из них специфична в отношении эфирных связей в положениях 1 и 3 триглицерида, а другая - гидролизует связи в положении 2. Полный гидролиз триглицеридов происходит постадийно: сначала быстро гидролизуются связи 1 и 3, а потом уже медленно идет гидролиз 2-моноглицерида (схема).

Необходимо отметить, что в расщеплении жиров участвует также кишечная липаза, однако активность ее невысока. К тому, же эта липаза катализирует гидролитическое расщепление моноглицеридов и не действует на ди- и триглицериды. Таким образом, практически основными продуктами, образующимися в кишечнике при расщеплении пищевых жиров, являются жирные кислоты, моноглицериды и глицерин.

Всасывание жиров в кишечнике . Всасывание происходит в проксимальной части тонкого кишечника. Тонко эмульгированные жиры (величина жировых капелек эмульсии не должна превышать 0,5 мкм) частично могут всасываться через стенку кишечника без предварительного гидролиза. Однако основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин. Жирные кислоты с короткой углеродной цепью (менее 10 С-атомов) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда - в печень, минуя какие-либо превращения в кишечной стенке. Сложнее дело обстоит с жирными кислотами с длинной углеродной цепью и моноглицеридами. Всасывание этих соединений происходит при участии желчи и главным образом желчных кислот, входящих в ее состав. В желчи соли желчных кислот, фосфолипиды и холестерин содержатся в соотношении 12,5:2,5:1,0. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы (мицеллярный раствор). Структура этих мицелл такова, что их гидрофобное ядро (жирные кислоты, глицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся с места гидролиза жиров к всасывающей поверхности кишечного эпителия. Относительно механизма всасывания жировых мицелл единого мнения нет. Одни исследователи считают, что в результате так называемой мицеллярной диффузии, а возможно и пиноцитоза, мицеллы целой частицей проникают в эпителиальные клетки ворсинок. Здесь происходит распад жировых мицелл; при этом желчные кислоты сразу же поступают в ток крови и через систему воротной вены попадают в печень, откуда они вновь секретируются в составе желчи. Другие исследователи допускают возможность перехода в клетки ворсинок только липидного компонента жировых мицелл. А соли желчных кислот, выполнив свою физиологическую роль, остаются в просвете кишечника. И лишь потом в подавляющем большинстве они всасываются в кровь (в подвздошной кишке), попадают в печень и затем выделяются с желчью. Таким образом, и те и другие исследователи признают, что происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (энтерогепатической) циркуляции.

С помощью метода меченых атомов было показано, что в желчи содержится лишь небольшая часть желчных кислот (10-15% от общего количества), вновь синтезированных печенью, т. е. основная масса желчных кислот желчи (85-90%)- это желчные кислоты, реабсорбированные в кишечнике и повторно секретируемые в составе желчи. Установлено, что у человека общий пул желчных кислот - примерно 2,8-3,5 г; при этом они совершают 5-6 оборотов в сутки.

Ресинтез жиров в стенке кишечника . В стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своей природе от пищевого жира. В известной мере это обеспечивается тем, что в синтезе триглицеридов (а также фосфолипидов) в кишечной стенке принимают участие наряду с экзогенными и эндогенные жирные кислоты. Однако способность к осуществлению в станке кишечника синтеза жира, специфичного для данного вида животного, все же ограничена. А. Н. Лебедевым показано, что при скармливании животному, особенно предварительно голодавшему, больших количеств чужеродного жира (например, льняного масла или верблюжьего жира) часть его обнаруживается в жировых тканях животного в неизмененном виде. Жировые депо скорее всего являются единственной тканью, где могут откладываться чужеродные жиры. Липиды, входящие в состав протоплазмы клеток других органов и тканей, отличаются высокой специфичностью, их состав и свойства мало зависят от пищевых жиров.

Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах сводится к следующему: первоначально из жирных кислот образуется их активная форма - ацил-КоА, после чего происходит ацилирование моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:

Таким образом, в клетках кишечного эпителия высших животных моноглицериды, образующиеся в кишечнике при переваривании пищи, могут ацилироваться непосредственно, без промежуточных стадий.

Однако в эпителиальных клетках тонкого кишечника содержатся ферменты - моноглицеридлипаза, расщепляющая моноглицерид на глицерин и жирную кислоту, и глицеролкиназа, способная превращать глицерин (образовавшийся из моноглицерида или всосавшийся из кишечника) в глицерол-3-фосфат. Последний, взаимодействуя с активной формой жирной кислоты - ацил-КоА, дает фосфатидную кислоту, которая затем используется для ресинтеза триглицеридов и особенно глицерофосфолипидов (подробно см. ниже).

Переваривание и всасывание глицерофосфолипидов и холестерина . Вводимые с пищей глицерофосфолипиды подвергаются в кишечнике воздействию специфических гидролитических ферментов, разрывающих эфирные связи между компонентами, входящими в состав фосфолипидов. Принято считать, что в пищеварительном тракте распад глицерофосфолипидов происходит при участии фосфолипаз, выделяемых с панкреатическим соком. Ниже приведена схема гидролитического расщепления фосфатидилхолина:

Различают несколько типов фосфолипаз.

  • Фосфолипаза A 1 гидролизует эфирную связь в положении 1 глицерофосфолипида, в результате чего отщепляется одна молекула жирной кислоты и, например, при расщеплении фосфатидилхолина образуется 2-ацилглицерилфосфорилхолин.
  • Фосфолипаза А 2 , ранее называемая просто фосфолипазой А, катализирует гидролитическое отщепление жирной кислоты в положении 2 глицерофосфолипида. Образующиеся при этом продукты носят название лизофосфатидилхолина и лизофосфатидилэтаноламина. Они токсичны и вызывают разрушение мембран клеток. Высокая активность фосфолипазы А 2 в яде змей (кобра и др.) и скорпионов приводит к тому, что при их укусе гемолизируются эритроциты.

    Фосфолипаза А 2 поджелудочной железы поступает в полость тонкого кишечника в неактивной форме и только после воздействия трипсина, приводящего к отщеплению от нее гептапептида, приобретает активность. Накопление лизофосфолипидов в кишечнике может быть устранено, если одновременно на глицерофосфолипиды действуют обе фосфолипазы: А 1 и А 2 . В результате образуется нетоксичный для организма продукт (например, при расщеплении фосфотидилхолина - глицерилфосфорилхолин).

  • Фосфолипаза С вызывает гидролиз связи между фосфорной кислотой и глицерином, а фосфолипаза D расщепляет эфирную связь между азотистым основанием и фосфорной кислотой с образованием свободного основания и фосфатидной кислоты.

Итак, в результате действия фосфолипаз глицерофосфолипиды расщепляются с образованием глицерина, высших жирных кислот, азотистого основания и фосфорной кислоты.

Необходимо отметить, что подобный механизм расщепления глицерофосфолипидов существует и в тканях организма; катализируется этот процесс тканевыми фосфолипазами. Заметим, что последовательность реакций расщепления глицерофосфолипидов на отдельные компоненты еще неизвестна.

Механизм всасывания высших жирных кислот и глицерина нами был уже рассмотрен. Фосфорная кислота всасывается кишечной стенкой главным образом в виде натриевых или калиевых солей. Азотистые основания (холин и этаноламин) всасываются в виде своих активных форм.

Как уже отмечалось, в кишечной стенке происходит ресинтез глицерофосфолипидов. Необходимые компоненты для синтеза: высшие жирные кислоты, глицерин, фосфорная кислота, органические азотистые основания (холин или этаноламин) поступают в эпителиальную клетку при всасывании из полости кишечника, поскольку они образуются при гидролизе пищевых жиров и липидов; частично эти компоненты доставляются в эпителиальные клетки кишечника с током крови из других тканей. Ресинтез глицерофосфолипидов идет через стадию образования фосфатидной кислоты.

Что касается холестерина, то он попадает в пищеварительные органы человека преимущественно с яичным желтком, мясом, печенью, мозгом. В организм взрослого человека ежедневно поступает 0,1-0,3 г холестерина, содержащегося в пищевых продуктах либо в виде свободного холестерина, либо в виде его эфиров (холестеридов). Эфиры холестерина расщепляются на холестерин и жирные кислоты при участии особого фермента панкреатического и кишечного соков - холестеролэстеразы. Нерастворимый в воде холестерин, подобно жирным кислотам, всасывается в кишечнике лишь в присутствии желчных кислот.

Образование хиломикронов и транспорт липидов . Ресинтезированные в эпителиальных клетках кишечника триглицериды и фосфолипиды, а также поступивший в эти клетки из полости кишечника холестерин (здесь он может частично этерифицироваться) соединяются с небольшим количеством белка и образуют относительно стабильные комплексные частицы - хиломикроны (ХМ). Последние содержат около 2% белка, 7% фосфолипидов, 8% холестерина и его эфиров и свыше 80% триглицеридов. Диаметр ХМ колеблется от 100 до 5000 нм. Благодаря большим размерам частиц ХМ не способны проникать из эндотелиальных клеток кишечника в кровеносные капилляры и диффундируют в лимфатическую систему кишечника, а из нее - в грудной лимфатический проток. Затем из грудного лимфатического протока ХМ попадают в кровяное русло, т. е. с их помощью осуществляется транспорт экзогенных триглицеридов, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь. Уже через 1-2 ч после приема пищи, содержащей липиды, наблюдается алиментарная гиперлипемия. Это физиологическое явление, характеризующееся в первую очередь повышением концентрации триглицеридов в крови и появлением в ней ХМ. Пик алиментарной гиперлипемии приходится на 4-6 ч после приема жирной пищи. Обычно через 10-12 ч после приема пищи содержание триглицеридов возвращается к нормальным величинам, а ХМ полностью исчезают из кровяного русла.

Известно, что печень и жировая ткань играют наиболее существенную роль в дальнейшей судьбе ХМ. Последние свободно диффундируют из плазмы крови в межклеточные пространства печени (синусоиды). Допускается, что гидролиз триглицеридов ХМ происходит как внутри печеночных клеток, так и на их поверхности. Что же касается жировой ткани, то хиломикроны не способны (из-за своих размеров) проникать в ее клетки. В связи с этим триглицериды ХМ подвергаются гидролизу на поверхности эндотелия капилляров жировой ткани при участии фермента липопротеидлипазы, который тесно связан с поверхностью эндотелия капилляров. В результате образуются жирные кислоты и глицерин. Часть жирных кислот проходит внутрь жировых клеток, а часть связывается с альбуминами сыворотки крови и уносится с ее током. С током крови может покидать жировую ткань и глицерин.

Расщепление триглицеридов ХМ в печени и в кровеносных капиллярах жировой ткани фактически приводит к прекращению существования ХМ.

Промежуточный обмен липидов . Включает следующие основные процессы: расщепление триглицеридов в тканях с образованием высших жирных кислот и глицерина, мобилизацию жирных кислот из жировых депо и их окисление, образование ацетоновых тел (кетоновых тел), биосинтез высших жирных кислот, триглицеридов, глицерофосфолипидов, сфинголипидов, холестерина и т. д.

Внутриклеточный липолиз

Главным эндогенным источником жирных кислот, используемых в качестве "топлива", служит резервный жир, содержащийся в жировой ткани. Принято считать, что триглицериды жировых депо выполняют в обмене липидов такую же роль, как гликоген печени в обмене углеводов, а высшие жирные кислоты по своей роли напоминают глюкозу, которая образуется в процессе фосфоролиза гликогена. При физической работе и других состояниях организма, требующих повышенной затраты энергии, потребление триглицеридов жировой ткани как энергетического резерва увеличивается.

Поскольку в качестве источников энергии могут использоваться только свободные, т. е. неэтерифицированные, жирные кислоты, то триглицериды сначала гидролизуются при помощи специфических тканевых ферментов - липаз - до глицерина и свободных жирных кислот. Последние из жировых депо могут переходить в плазму крови (мобилизация высших жирных кислот), после чего они используются тканями и органами тела в качестве энергетического материала.

В жировой ткани содержится несколько липаз, из которых наибольшее значение имеют триглицеридлипаза (так называемая гормоночувствительная липаза), диглицеридлипаза и моноглицеридлипаза. Активность двух последних ферментов в 10-100 раз превышает активность первого. Триглицеридлипаза активируется рядом гормонов (например, адреналином, норадреналином, глюкагоном и др.), тогда как диглицеридлипаза и моноглицеридлипаза нечувствительны к их действию. Триглицеридлипаза является регуляторным ферментом.

Установлено, что гормоночувствительная липаза (триглицеридлипаза) находится в жировой ткани в неактивной форме и активируется цАМФ. В результате воздействия гормонов первичный клеточный рецептор модифицирует свою структуру, и в такой форме он способен активировать фермент аденилатциклазу, что в свою очередь стимулирует образование цАМФ из АТФ. Образовавшийся цАМФ активирует фермент протеинкиназу, который путем фосфорилирования неактивной триглицеридлипазы превращает ее в активную форму (рис. 96). Активная триглицеридлипаза расщепляет триглицерид (ТГ) на диглицерид (ДГ) и жирную кислоту (ЖК). Затем при действии ди- и моноглицеридлипаз образуются конечные продукты липолиза - глицерин (ГЛ) и свободные жирные кислоты, которые поступают в кровяное русло.

Связанные с альбуминами плазмы в виде комплекса свободные жирные кислоты с током крови попадают в органы и ткани, где комплекс распадается, а жирные кислоты подвергаются либо β-окислению, либо часть их используется на синтез триглицеридов (которые затем идут на образование липопротеидов), глицерофосфолипидов, сфинголипидов и других соединений, а также на этерификацию холестерина.

Другой источник жирных кислот - фосфолипиды мембран. В клетках высших животных непрерывно происходит метаболическое обновление фосфолипидов, в процессе которого образуются свободные жирные кислоты (продукт действия тканевых фосфолипаз).

Переваривание белков

Протеолитические ферменты, участвующие в переваривании белков и пептидов, синтезируются и выделяются в полость пищеварительного тракта в виде проферментов, или зимогенов. Зимогены неактивны и не могут переваривать собственные белки клеток. Активируются протеолитические ферменты в просвете кишечника, где действуют на пищевые белки.

В желудочном соке человека имеются два протеолитических фермента - пепсин и гастриксин, которые очень близки по строению, что указывает на образование их из общего предшественника.

Пепсин образуется в виде профермента - пепсиногена - в главных клетках слизистой желудка. Выделено несколько близких по строению пепсиногенов, из которых образуется несколько разновидностей пепсина: пепсин I, II (IIa, IIb), III. Пепсиногены активируются с помощью соляной кислоты, выделяющейся обкладочными клетками желудка, и аутокаталитически, т. е. с помощью образовавшихся молекул пепсина.

Пепсиноген имеет молекулярную массу 40 000. Его полипептидная цепь включает пепсин (мол. масса 34 000); фрагмент полипептидной цепи, являющийся ингибитором пепсина (мол. масса 3100), и остаточный (структурный) полипептид. Ингибитор пепсина обладает резко основными свойствами, так как состоит из 8 остатков лизина и 4 остатков аргинина. Активация заключается в отщеплении от N-конца пепсиногена 42 аминокислотных остатков; сначала отщепляется остаточный полипептид, а затем ингибитор пепсина.

Пепсин относится к карбоксипротеиназам, содержащим остатки дикарбоновых аминокислот в активном центре с оптимумом pH 1,5-2,5.

Субстратом пепсина являются белки - либо нативные, либо денатурированные. Последние легче поддаются гидролизу. Денатурацию белков пищи обеспечивает кулинарная обработка или действие соляной кислоты. Следует отметить следующие биологические функции соляной кислоты :

  1. активация пепсиногена;
  2. создание оптимума pH для действия пепсина и гастриксина в желудочном соке;
  3. денатурация пищевых белков;
  4. антимикробное действие.

От денатурирующего влияния соляной кислоты и переваривающего действия пепсина собственные белки стенок желудка предохраняет слизистый секрет, содержащий гликопротеиды.

Пепсин, являясь эндопептидазой, быстро расщепляет в белках внутренние пептидные связи, образованные карбоксильными группами ароматических аминокислот - фенилаланина, тирозина и триптофана. Медленнее гидролизует фермент пептидные связи между лейцином и дикарбоновыми аминокислотами типа: в полипептидной цепи.

Гастриксин близок к пепсину по молекулярной массе (31 500). Оптимум pH у него около 3,5. Гастриксин гидролизует пептидные связи, образуемые дикарбоновыми аминокислотами. Соотношение пепсин/гастриксин в желудочном соке 4:1. При язвенной болезни соотношение меняется в пользу гастриксина.

Присутствие в желудке двух протеиназ, из которых пепсин действует в сильнокислой среде, а гастриксин в среднекислой, позволяет организму легче приспосабливаться к особенностям питания. Например, растительно-молочное питание частично нейтрализует кислую среду желудочного сока, и pH благоприятствует переваривающему действию не пепсина, а гастриксина. Последний расщепляет связи в пищевом белке.

Пепсин и гастриксин гидролизуют белки до смеси полипептидов (называемых также альбумозами и пептонами). Глубина переваривания белков в желудке зависит от длительности нахождения в нем пищи. Обычно это небольшой период, поэтому основная масса белков расщепляется в кишечнике.

Протеолитические ферменты кишечника. В кишечник протеолитические ферменты поступают из поджелудочной железы в виде проферментов: трипсиногена, химотрипсиногена, прокарбоксипептидаз А и В, проэластазы. Активирование этих ферментов происходит путем частичного протеолиза их полипептидной цепи, т. е. того фрагмента, который маскирует активный центр протеиназ. Ключевым процессом активирования всех проферментов является образование трипсина (рис. 1).

Трипсиноген, поступающий из поджелудочной железы, активируется с помощью энтерокиназы, или энтеропептидазы, которая вырабатывается слизистой кишечника. Энтеропептидаза также выделяется в виде предшественника киназогена, который активируется протеазой желчи. Активированная энтеропептидаза быстро превращает трипсиноген в трипсин, трипсин осуществляет медленный аутокатализ и быстро активирует все остальные неактивные предшественники протеаз панкреатического сока.

Механизм активирования трипсиногена заключается в гидролизе одной пептидной связи, в результате чего освобождается N-концевой гексапептид, называемый ингибитором трипсина. Далее трипсин, разрывая пептидные связи в остальных проферментах, вызывает образование активных ферментов. При этом образуются три разновидности химотрипсина, карбоксипептидазы А и В, эластаза.

Кишечные протеиназы гидролизуют пептидные связи пищевых белков и полипептидов, образовавшихся после действия желудочных ферментов, до свободных аминокислот. Трипсин, химотрипсины, эластаза, будучи эндопептидазами, способствуют разрыву внутренних пептидных связей, дробя белки и полипептиды на более мелкие фрагменты.

  • Трипсин гидролизует пептидные связи, образованные главным образом карбоксильными группами лизина и аргинина, менее активен он в отношении пептидных связей, образованных изолейцином.
  • Химотрипсины наиболее активны в отношении пептидных связей, в образовании которых принимает участие тирозин, фенилаланин, триптофан. По специфичности действия химотрипсин похож на пепсин.
  • Эластаза гидролизует те пептидные связи в полипептидах, где находится пролин.
  • Карбоксипептидаза А относится к цинксодержащим ферментам. Она отщепляет от полипептидов С-концевые ароматические и алифатические аминокислоты, а карбоксипептидаза В - только С-концевые остатки лизина и аргинина.

Ферменты, гидролизующие пептиды, имеются также и в слизистой кишечника, и хотя они могут секретироваться в просвет, но функционируют преимущественно внутриклеточно. Поэтому гидролиз небольших пептидов происходит после их поступления в клетки. Среди этих ферментов лейцинаминопептидаза, которая активируется цинком или марганцем, а также цистеином, и высвобождает N-концевые аминокислоты, а также дипептидазы, гидролизующие дипептиды на две аминокислоты. Дипептидазы активируются ионами кобальта, марганца и цистеином.

Разнообразие протеолитических ферментов приводит к полному расщеплению белков до свободных аминокислот даже в том случае, если белки предварительно не подвергались действию пепсина в желудке. Поэтому больные после операции частичного или полного удаления желудка сохраняют способность усваивать белки пищи.

Механизм переваривания сложных белков

Белковая часть сложных белков переваривается так же, как и простых белков. Простетические группы их гидролизуются в зависимости от строения. Углеводный и липидный компоненты после отщепления их от белковой части гидролизуются амилолитическими и липолитическими ферментами. Порфириновая группа хромопротеидов не расщепляется.

Представляет интерес процесс расщепления нуклеопротеидов, которыми богаты некоторые продукты питания. Нуклеиновый компонент отделяется от белка в кислой среде желудка. В кишечнике полинуклеотиды гидролизуются с помощью нуклеаз кишечника и поджелудочной железы.

РНК и ДНК гидролизуются под действием панкреатических ферментов - рибонуклеазы (РНКазы) и дезоксирибонуклеазы (ДНКазы). Панкреатическая РНКаза имеет оптимум pH около 7,5. Она расщепляет внутренние межнуклеотидные связи в РНК. При этом образуются более короткие фрагменты полинуклеотида и циклические 2,3-нуклеотиды. Циклические фосфодиэфирные связи гидролизуются той же РНКазой или кишечной фосфодиэстеразой. Панкреатическая ДНКаза гидролизует межнуклеотидные связи в ДНК, поступающей с пищей.

Продукты гидролиза полинуклеотидов - мононуклеотиды подвергаются действию ферментов кишечной стенки: нуклеотидазы и нуклеозидазы:

Эти ферменты обладают относительной групповой специфичностью и гидролизуют как рибонуклеотиды и рибонуклеозиды, так и дезоксирибонуклеотиды и дезоксирибонуклеозиды. Всасываются нуклеозиды, азотистые основания, рибоза или дезоксирибоза, Н 3 РO 4 .

Переваривание липидов в желудочно-кишечном тракте

1. В ротовой полости переваривания липидов не происходит, т.к. липаза в слюне проявляет активность в следовых количествах, а пища в ротовой полости находится непродолжительное время.

2. Желудочная липаза переваривает только эмульгированные жиры (жиры молока). Наибольшее значение имеет у детей. У взрослых активность низкая вследствие кислотности желудочного сока.

3. Основное переваривание липидов происходит в тонком кишечнике, где жиры подвергаются действию панкреатического сока и желчи, которая вырабатывается печенью. Панкреатический сок содержит липазу, холестеролэстеразу, фосфолипазы А 1 , А 2 , С, D.

Строение и функция желчных кислот

В составе желчи содержатся конъюгированные желчные кислоты. Желчные кислоты являются производными холановой кислоты, при этом, 60 - 80 % - конъюгаты с глицином, 20 - 40 % - конъюгаты с таурином. Соотношение глициновых и тауриновых конъюгатов может меняться в зависимости от состава пищи: углеводы - глициновые конъюгаты, белки - тауриновые конъюгаты.


Рис. 8. Химическое строение холановой кислоты


Рис. 10. Химическое строение таурохолевой кислоты

Функции желчных кислот:

Поступая в 12-ти перстную кишку обеспечивают:

1. Эмульгирование жиров.

2. Активирование липазы.

3. Всасывание продуктов переваривания липидов путем образования комплекса - сложной мицеллы.

Перистальтика кишечника способствует дроблению жировых капель, а желчные кислоты поддерживают их во взвешенном состоянии. Эмульгирование жиров увеличивает поверхность раздела фаз, что очень важно для работы липазы, которая работает на границе раздела фаз. Это достигается за счет бифильности молекул желчных кислот - одна часть молекулы желчной кислоты является гидрофобной (располагается внутри жировой капли), другая гидрофильной (направлена наружу). Ограничивая жировую каплю, желчные кислоты обеспечивают ее дробление и увеличению площади поверхности. Продукты гидролиза - высшие жирные кислоты (ВЖК), диацилглицеролы (ДАГ) и моноацилглицеролы (МАГ) также обладают эмульгирующим действием.

Переваривание ТАГ

Панкреатическая липаза вырабатывается в неактивном виде, активируется колипазой и желчными кислотами. Оптимум рН липазы в присутствии желчи смещается с 8 до 6, т.е. до значения рН которое бывает после приема жирной пищи в верхних отделах тонкого кишечника. Есть данные о существовании 2-х типов липаз:

1-й тип - гидролизует связи 1 и 3;

2-й тип - (карбоксиэстераза) - гидролиз связи по 2-му положению.

Гидролиз жира идет в составе жировой капли на границе раздела фаз.


ТАГ

ДАГ 1,2-ДАГ



Глицерин

Рис. 11. Схема гидролиза триацилглицерола (ТАГ)

Под действием панкреатической липазы отщепляется жирная кислота по 1 или 3 положению, затем еще одна и образуется 2-моноацилглицерол. 2-МАГ может всасываться через стенку кишечника, но может отсекаться еще одна жирная кислота и образуется глицерол и жирные кислоты. Таким образом, конечными продуктами гидролиза жира будут ВЖК и глицерол.

Переваривание фосфолипидов

Осуществляется специальными липолитическими ферментами, которые называются фосфолипазами. Существуют следующие виды фосфолипаз: А 1 , А 2 , С и D.

Рис. 12. Схема гидролиза лецитина фосфолипазами

Фосфолипаза А 1 гидролизует эфирную связь в положении 1.

Фосфолипаза А 2 гидролизует эфирную связь в положении 2. Под действием фосфолипазы А 2 образуются очень токсичные продукты лизофосфатиды - вызывают разрушение клеточных мембран. Образуются в большом количестве под действием яда змей, скорпионов (за счет высокой активности фосфолипазы А 2 в яде этих животных), что приводит к гемолизу. Фосфолипаза А 2 , как и все ферменты является с химической точки зрения белком, причем фосфолипаза А 2 содержащаяся в яде с белком, чужеродным для организма человека, с соответствующей иммунной реакцией на него. В основе терапии укуса животных обладающих ядом гемолитического действия лежит переливание иммунизированной сыворотки крови, содержащей готовые антитела к фосфолипазе А 2 , как к белку. Следует учитывать, что для каждого вида ядовитого животного своя сыворотка. Существуют и комбинированные сыворотки. В желудочно-кишечном тракте человека очень важно согласованное действие фосфолипаз А 1 и А 2 на фосфолипид. Некоторые авторы считают, что в составе панкреатического и кишечного соков существуют специальные ферменты - лизофосфолипазы, осуществляющее гидролиз лизофосфолипидов при их случайном образовании. Защита от токсического действия фосфолипазы А 2 также достигается тем, что она вырабатывается в неактивном виде. Активируется трипсином путем отщепления гексапептида.

Фосфолипаза С - гидролизует связь между фосфорной кислотой и глицерином.

Фосфолипаза D - гидролизует связь между фосфорной кислотой и азотистым основанием.

Таким образом, под действием фосфолипаз в процессе переваривания фосфолипидов образуются следующие продукты:

1. Глицерол.

2. Высшие жирные кислоты.

3. Фосфорная кислота.

4. Азотистое основание.

Гидролиз эфиров холестерола осуществляется холестеролэстеразой на холестерол и жирные кислоты.

. ЖЕЛУДОК : у взрослого человека в желудке пищевые триглицериды практически не расщепляются, т.к.

рН ↓ под действием НСl до 1,5 (опт. рН для липазы = 5,5-7,5). Также в желудке отсутствуют

условия для эмульгирования , а липаза может действовать только на триглицериды , находящиеся в

форме эмульсии );

у грудных детей в желудке (рН〜5,2) под действием лингвальной липазы происходит активно

гидролиз эмульгированных жиров молока.

. КИШЕЧНИК : рН под действием гидрокарбонатов , растворенных в щелочном содержимом сока

поджелудочной железы и желчи .

В составе сока поджелудочной железы в кишечник поступают:

1). липаза гидролиз жиров до свободных жирных кислот и моноацилглицеролов , может

отщеплять жирную кислоту по 1 -положению глицерина в фосфолипидах ;

1). холестеролэстераза поджелудочной железы – гидролиз пищевых эфиров холестерина;

2). фосфолипаза А 2 отщепляет жирную кислоту от фосфолипидов по 2 -положению глицерина ;

3). щелочная фосфатаза кишечного сока – гидролиз по фосфоэфирным связям фосфолипидов .

Всасывание холестерола , частично расщепленных фосфолипидов происходит с помощью мицелл,

формируемых солями парных желчных кислот .

Обмен белков, аминокислот

ОРНИТИНОВЫЙ ЦИКЛ МОЧЕВИНООБРАЗОВАНИЯ (ОЦ ) (в печени) - основной путь детоксикации аммиака (N Н 3 ), который образуется при распаде азот -содержащих веществ: аминокислот, биогенных аминов, пуринов и пиримидинов, фосфо- и гликолипидов, гексозаминов, гликозаминогликанов, гема и др. Реакции ОЦ направлены на связывание токсичного Аммиака с образованием нетоксичной Мочевины . Азот в мочевине происходит из карбамоил-фосфата (N Н 3 +СО 2 ) и аспарагиновой кислоты .

В ОЦ участвуют а/к – орнитин (непротеиногенная), аспартат и образуется аргинин ).

(На образование 1 молекулы Мочевины расходуется энергия 3 АТФ , которые ресинтезируются за счет превращения промежуточного метаболита ОЦ фумарата через малат в ОА (в ц. Кребса), что сопровождается восстановлением НАДНН + , обеспечивающим синтез 2,5 АТФ в ПДЦМХ . Образованная молекула ОА в реакции трансаминирования при участии пиридоксаминфосфата (кофермент В 6 ) превращается в аспартат , аминогруппа которого, наряду с молекулой аммиака , используется в синтезе Мочевины (N Н 2 -СО -N Н 2 )).

Гипераммониемия (аммиака в крови) – при ↓ активности ферментов ОЦ . Проявления: учащенное дыхание, возбудимость, мигрень, судороги, рвота при употреблении белковой пищи.

ТРАНСДЕЗАМИНИРОВАНИЕ (НЕПРЯМОЕ ДЕЗАМИНИРОВАНИЕ – НД ) - процесс дезаминирования α-аминокислот (а/к ) с образованием α-кетокислот (к/к ) без промежуточного освобождения аммиака . Протекает НД в 2 этапа : 1 - трансаминирование , катализируемое В 6 -зависимой аминотрансферазой : происходит перенос N Н 2 –группы с а/к на α-кетоглутарат , с образованием к/к и глутамата , соответственно. Витамин В 6 вступает в реакцию в форме кофермента – пиридоксаль-Ф , который принимает от а/к амино группу и превращается в пиридоксамин-Ф (через образование промежуточных шиффовых оснований альдимин и кетимин ), который далее отдает N Н 2 –группу на α-кетоглутарат с образованием глутамата . 2 окислительное дезаминирование глутамата при участии глутаматдегидрогеназы с выделением аммиака и образованием α-кетоглутарата . Другие типы дезаминирования : восстановительное, гидролитическое (у м/орг.), внутримолекулярное (гистидин → урокановая к-та).

ТРАНСРЕАМИНИРОВАНИЕ (НЕПРЯМОЕ АМИНИРОВАНИЕ – НА ) - процесс, обратный непрямому дезаминированию , обеспечивающий связывание аммиака с образованием из α-к/к α-а/к . НА протекает в 2 этапа: 1 – восстановительное аминирование α–кетоглутарата с образованием глутамата и 2 – трансаминирование : перенос аминогруппы с глутамата на α-к/к с образованием α-а/к .

БИОГЕННЫЕ АМИНЫ (БА ) биологически активные производные аминокислот , ключевой реакцией образования которых является В 6 –зависимое декарбоксилирование а/к . К БА относятся: ГАМК декарбоксилированное производное глутамата ; Гистамин декарбоксилированный гистидин , Серотонин – образуется из триптофана (при В 6 –зав. декарбоксилировании и гидроксилировании при участии вит.С ); Катехоламины : Дофамин , Норадреналин , Адреналин – образуются из тирозина (при участии В 6 -зависимой декарбоксилазы, вит.С -зависимой гидроксилазы, S АМ -зависимой метилтрансферазы).

ГЛИКО- и КЕТОГЕННЫЕ АМИНОКИСЛОТЫ : Гликогенные а/к – а/к, которые, распадаясь, превращаются в ЩУК и ПВК, а далее через 3 -й обходной путь вступают в глюконеогенез → далее в гликогеногенез . Кетогенные а/к (ЛЛИФТТ ) – а/к, при распаде которых образуется ацетоацетат (кетоновое тело ) или ацетилКоА (при концентрации которого синтезируются кетоновые тела ). Лиз, Лей – строго кетогенные а/к ; И/лей, Ф/а, Тир, Трп – смешанные – глико - и кетогенные а/к.

НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ : Вал, Лей, Изолей, Мет, Ф/а, Трп, Тре, Лиз. ; Полузаменимые – Тир, Цист .; Частично заменимая – Арг. ; Незаменимая в детском возрасте – Гист .

ЗНАЧЕНИЕ АМНОКИСЛОТ : . ФЕНИЛАЛАНИН (незам.а/к) → ТИРОЗИН (полузамен. а/к) – глико- и кетогенные а/к являются предшественниками: 1 ). катехоламинов (в мозговом веществе надпочечников, в мозге) – дофамин , норадреналин , адреналин ; 2 ). йодтиронинов (в щитовидной железе) – трийодтиронин (Т 3 ), тетрайодтиронин (Т 4 ); 3 ). пигмента меланина (в коже, волосах, радужке).

Фенилкетонурия (выведение фенилпирувата с мочой) – наследственная энзимопатия , связанная с активности фермента – фенилаланинмонооксигеназы , гидроксилирующей фенилаланин в тирозин . Проявления: олигофрения , возбудимость, мышечная гипотония.

Алкаптонурия (выведение алкаптона с мочой) – наследственная энзимопатия , связанная с активности фермента – гомогентизатдиокигеназы , участвующего в обмене тирозина , что сопровождается гомогентизиновой кислоты и образованием из нее черного пигмента – алкаптона . Проявления: алкаптон откладывается в суставах , что сопровождается воспалением и ограничением их подвижности; развивается охроноз , связанный с отложением алкаптона в хрящах ушных раковин и крыльев носа.

Альбинизм – развивается при нарушении синтеза меланина из тирозина . Отмечается депигментация радужки глаз, волос; чувствительность кожи к УФ.

Гипотиреоз выработки Т 3 и Т 4 , что приводит к кретинизму в детском возрасте и микседеме (слизистый отек) – у взрослых. Гипертиреоз - выработки Т 3 и Т 4 , что приводит к развитию Базедовой болезни (развиваются экзофтальм, зоб, тахикардия, t 0). (Ферменты , обеспечивающие синтез Т 3 и Т 4 , из тирозина : 1) - йодидпероксидаза , активирующая пищевой йод ; 2) - тирозинйодиназа , включающая йод по С 3 и С 5 -положениям тирозина с конденсацией 2 молекул тирозина ).

. ТРИПТОФАН (незам.; глюко- и кетогенная а/к) необходим для синтеза: 1 ). серотонина (биогенный амин) – регулирует многие соматические функции организма и является антидепрессантом; 2 ). мелатонина – гормон эпифиза, регулирующий биоритмы; 3 ). витамина РР (НАД + , НАДФ + ) в печени.

Гиповитаминоз В 6 -сяактивность В 6 зависимой кинурениназы и нарушается обмен триптофана , что сопровождается выведением с мочой побочного метаболита – ксантуреновой кислоты , и нарушением синтеза витамина РР (НАД + , НАДФ + ). Развивается пеллагроподобный дерматит.

Болезнь «голубых пеленок» - связана с нарушением обмена триптофана , что сопровождается образования индолилацетата , индикана (окрашивают пеленки новорожденных в голубой цвет). Проявления: пеллагроподобный дерматит, эмоциональная лабильность, атаксия, запоры.

. МЕТИОНИН (незам. а/к ) и ЦИСТЕИН (полузамен. а/к ) – серосодержащие а/к: 1 ). Метионин в форме кофермента SAM участвует в синтезе: а). адреналина из норадреналина ; б). мелатонина из серотонина , в). холина из этаноламина (холин входит в состав лецитина , ацетилхолина ), г). креатин-фосфата (наряду с арг и гли ) – мышечный макроэрг, д). карнитина (наряду с лиз ) – переносчик ЖК через мембраны МХ, е). полиаминов спермина , спермидина (наряду с орнитином ) – регулируют процессы клеточного роста и дифференцировки, активируя синтез ДНК, РНК, белка, ж). ансерина из карнозина (наряду с гист и β-ала ) – повышают амплитуду мышечного сокращения в утомленной мышце.

2 ). ЦИСТЕИН – необходим для синтеза: а). тиоэтиламина , который участвует в образовании из витамина Пантотеновая кислота коферментов – КоА S Н и 4-фосфопантотеина , б). глутатиона – трипептида, включающего также глу и гли – участвует в переносе а/к через мембраны, в восстановлении дегидроаскорбиновой кислоты , в инактивации активных форм кислорода , в восстановлении SH - групп ферментов и мембран э/ц, в). таурина – образует парные желчные кислоты (таурохолевая, таурохенодезоксихолевая ).

Гомоцистеинурия - выведение с мочой гомоцистеина , т.к.активность цистатионин-синтазы . Нарушается синтез цис , ↓ умственное развитие, судороги, остеопороз (↓ гидроксилирование лиз в коллагене ), дрожание радужки глаз.

Цистинурия -экскреции с мочой цистеина , цистина при нарушении почечной реабсорбции. Образуются цистиновые камни, происходит закупорка мочевыводящих путей.

. ЛИЗИН (н/з ), АРГИНИН (частично н/з а/к ), ГИСТИДИН (н/з в детском возрасте ) оснóвные а/к, «+ » - заряж. ЛИЗИН и АРГИНИН : 1 ).входят в состав гистонов (Н1, Н2а, Н2в, Н3, Н4 ), 2 ). ЛИЗИН – участвует в преобразовании вит.Н в кофермент – биоцитин ; Липоевой кислоты – в липамид ; участвует в организации активного центра аминотрансфераз , связывая коферменты В 6 . 3 ). АРГИНИН – используется для синтеза креатин-фосфата (наряду с гли и мет ), орнитина . Образуется арг в орнитиновом цикле . 4 ). ГИСТИДИН – является предшественником гистамина ; участвует в образовании карнозина и ансерина ; в связывании гемоглобином О 2 .

. ГЛУТАМАТ, АСПАРТАТ (замен. а/к ) дикарбоновые а/к , «-»-заряж. – участвуют: 1 ). в связывании аммиака с образованием глутамина и аспарагина , 2 ). в синтезе пуринов и пиримидинов , 3 ). в образовании альбуминов и глобулинов крови, 4 ). в трансаминировании , 5 ). АСПАРТАТ – участвует в орнитиновом цикле , 6). ГЛУТАМАТ – в синтезе ГАМК , глутатиона .

. ГЛИЦИН (зам. а/к ) - участвует в синтезе: 1 ). глутатиона (наряду с цис и глу ), 2 ). гема (наряду с СукцинилКоА ), 3 ). пуринов аденина , гуанина , 4 ). парных желчных кислот – гликохолевая , гликохенодезоксихолевая , 5 ). креатин-фосфата (наряду с арг и мет ), 6 ). участвует в детоксикации продуктов гниения белков , 7 ). в образовании активной формы ТГФК (кофермент фолиевой кислоты ) – N 5 , N 10 -метилен-ТГФК , необходимой для синтеза серина , тимина из урацила .

ПРОСТЫЕ (ПБ ) и СЛОЖНЫЕ БЕЛКИ (СБ ): ПБ протеины : состоят только из аминокислот (альбумины, глобулины, гистоны, протамины, проламины ). СБ протеиды : состоят из апопротеина и простетической небелковой группы (металлопротеины (трансферрин, церулоплазмин ), фосфо- , нуклео- (РНК-содерж. - рибосома , ДНК-содерж. - нуклеосома ), хромо- (цветные белки : Нв, Мв, цитохромы , родопсин, флавопротеиды ), глико- , липопротеины ).

Фибриллярные белки коллаген , эластин ; фибронектин и ламинин (адгезивные белки ); кератины волос; актин и миозин – сократительные белки; фиброин шелка и паутины.

Азотистый баланс – соотношение количества азота , поступающего в организм в составе пищи и выделяемого с мочой, потом, калом. При положительном АБ – происходит задержка азота в организме – в растущем организме, при беременности, при восстановлении после болезни. Отрицательный АБ – больше азота выводится (гиперазотурия ) – при активном распаде тканевых белков при гипертиреозе, сахарном диабете, распаде злокачественной опухоли.

ПРОДУКТЫ ГНИЕНИЯ БЕЛКОВ (ПГБ ) и ПУТИ ИХ ДЕТОКСИКАЦИИ : ПГБ скатол ,индол (образуются из трп ), крезол ,фенол (из ф/а и тир ),сероводород (из цист , мет ),кадаверин (из лиз )и др. - образуются в результате разложения пищевых белков и а/к микрофлорой нижних отделов кишечника. Усиливаются процессы гниения при протеолитической функции поджелудочной железы (остр., хронич. панкреатит) Основное место детоксикации ПГБ печень , где происходит их метилирование, ацилирование, конъюгирование с глюкуроновой и серной кислотами , с глицином .

По гиппуровой кислоте в моче (продукт конденсации бензойной кислоты с глицином ) судят о детоксикационной функции печени .

ОБМЕН НУКЛЕОТИДОВ (Н/Т ): Н/Т - состоят из азотистого основания (АО ) (пуриновые АО – аденин и гуанин , пиримидиновые – тимин , урацил , цитозин) , рибозы/дезоксирибозы и остатка фосфорной кислоты (ФК ).

1 . при распаде Н/Т : отщепляется ФК под действием нуклеотидаз → далее отщепляется пентоза → происходит дезаминирование АО (кроме урацила ) и превращение АО в конечные продукты : для пуринов мочевая кислота (МК ) (предшественники – гипоксантин , ксантин ), для пиримидинов β-аланин (для тимина β-аминоизомасляная кислота ). Нуклеозиды отличаются от н/т – отсутствием ФК .

Подагра – отложение в суставах плохо растворимых Nа-солей мочевой кислоты при гиперурикемии (концентрации МК в крови), что является результатом употребления пурин -содержащих продуктов (кофе, икра), или активности гуанин , гипоксантин-фосфорибозил-трансферазы . Развиваются боли в суставах, позвоночнике, их подвижность, гиперурикемия , уратурия ( МК и ее Nа-солей в моче).

Болезнь Леша-Найхана наследственная энзимопатия , связанная со гуанин,гипоксантин-фосфорибозилтрансферазы . Проявления: возбудимости, ↓ умственного развития, нанесение самоповреждений, почечно-каменная болезнь.

Гиперурикемия, уратурия мочевой кислоты в крови и моче при подагре, болезни Леша-Найхана, патологии почек, печени, при лейкемии.

2 . синтез Н/Т : а ). ПУРИНОВЫЕ Н/Т синтезируются за счет формирования пуринового кольца на активированной фосфорибозе фосфорибозилпирофосфате (Ф R РР ) из глицина , аспартата , 2 -х молекул глутамина , и при участии формил- и метен- ТГФК (кофермент фолиевой кислоты В 9 ). При этом образуется Инозиновая кислота , которая далее аминируется с образованием АМФ (источник аминогруппы аспартат ) и ГМФ (источник аминогруппы глутамин ). б ). При синтезе ПИРИМИДИНОВЫХ Н/Т сначала формируется Оротовая кислота (из карбамоил-фосфата и аспартата ), которая далее переносится на Ф R РР с образованием оротидилмонофосфата (ОМФ ). ОМФ , декарбоксилируясь , превращается в УМФ , который при участии глутамина → в ЦМФ , а при участии метилен-ТГФК – в ТМФ .

Значение Н/Т : являются мономерами ДНК и РНК ; АТФ – универсальный макроэрг ; выполняют коферментную функцию. Значение УТФ и ЦТФ как коферментов : УТФ – участвует в синтезе гликогена , во взаимопревращении галактозы в глюкозу , в синтезе гликолипидов , гликозаминогликанов . ЦТФ – участвует в синтезе фосфолипидов .

Оротацидурия – выведение оротовой кислоты с мочой при активности ОМФ-декарбоксилазы , что сопровождается синтеза пиримидинов урацила , тимина , цитозина (нарушается пролиферация и дифференцировка быстро делящихся клеток). Развивается мегалобластическая анемия, дерматиты.

СИНТЕЗ ГЕМА : из Глицина и СукцинилКоА образуется Аминолевулиновая кислота , 2 -е молекулы которой формируют порфобилиноген , из 4 -х молекул которого синтезируется уропорфириноген (УПГ ), который через n- количество стадий превращается в Протопорфирин- IX , в который феррохелатаза встраивает железо ( 2+ ) и образуется ГЕМ . Значение ГЕМА - является простетической группой хромопротеидов (цветные белки): Нв , Мв, цитохромы ; является коферментом каталазы и пероксидазы .

Порфирии (эритропоэтическая, печеночная, кожная и др.) – наследственные энзимопатии , связанные со активности какого-либо фермента, участвующего в синтезе гема (напр., ↓активности уропорфириноген- III -синтазы ). Развиваются гипертрихоз, фотодерматит, эритродонтия; с мочой выводятся порфобилиноген , уропорфириноген и др. промежуточные метаболиты.

РАСПАД ГЕМА : под действием гем-окисляющей системы ГЕМ последовательно превращается в вердоглобин биливердин билирубин , который в крови адсорбируется на альбуминах , превращаясь в непрямой билирубин (НБ , 75 %) . В печени , конъюгируясь с глюкуроновой или серной кислотами (при участии глюкуронил- и ФАФС фосфоаденозинфосфат–сульфо трансферазы ), происходит образование прямого билирубина (ПБ – нетоксичный, растворимый, дает прямую реакцию с диазореактивом ) . Поступая в кишечник билирубин многократно восстанавливается и превращается в стеркобилин – конечный продукт распада гема , который в норме выводится с калом (300 мг ) и мочой (2-3 мг ).

Желтухи – развиваются при уровня билирубина в крови (гипербилирубинемия ). Различают 3 типа желтух : 1 гемолитическая (при гемолиза эритроцитов): Н Б в крови, стеркобилин в кале и моче; 2 паренхиматозная (при гепатитах, циррозах): появление уробилиногена в моче (предшественник стеркобилина ), в крови уровня общего БР ; 3 обтурационная , механическая (при закупорке желчных протоков камнем, опухолью): ПБ в крови, отсутствует стеркобилин в кале и моче (ахоличный – бесцветный кал), ПБ выводится с мочой (билирубинурия ) – моча приобретает цвет «темного пива».

СИНТЕЗ БЕЛКА : 1. транскрипция – переписывание последовательности нуклеотидов (н/т ) ДНК в последовательность н/т и РНК по принципу комплементарности (между пуринами и пиримидинами : А=Т (У ), Г Ц ), с заменой Т на У . 2. посттранкрипционный процессинг – созревание про- и РНК : вырезание интронов , сплайсинг – сшивание экзонов , «кэпирование» и РНК по 5′-концу: (+)-е метилированных н/т ), присоединение полиаденилата по 3′-концу. 3. трансляция (происходит на рибосомах при участии т РНК , приносящей а/к к месту синтеза полипептидной цепи) – раскодирование последовательности н/т и РНК в последовательность аминокислот белка : 3 н/т кодируют 1 а/к (триплетность генетического кода ). Свойства генетического кода : универсальность, триплетность, вырожденность, неперекрываемость. 4. посттрансляцинный процессинг (фолдинг – процесс сворачивания белка в правильную пространственную биологически активную конформацию при участии белков-шаперонов ; присоединение простетической группы в сложных белках).

Процессы транскрипции , трансляции , репликации протекают в 3 этапа : инициация, элонгация, терминация.

РЕПЛИКАЦИЯ ДНК : удвоение ДНК (при делении клетки) происходит при участии следующих ферментов: 1. хеликаза - раскручивает двойную спираль ДНК с образованием репликативной вилки , 2. топоизомераза – предупреждает суперспирализацию ДНК в местах формирования репликативной вилки , 3. праймаза – катализирует образование «затравочного» праймера (олиго рибо нуклеотид ), с которого начинается синтез ДНК , 4. ДНК-полимераза III (основной фермент репликации , катализирующий синтез лидирующей цепи ДНК и отстающей цепи фрагментами Оказаки в направлении 5′→ 3′), ДНК-полимераза I (удаляет затравочный праймер и замещает на олиго дезоксирибо нуклеотид ),ДНК-полимераза II (участвует в репарации – устранении ошибок); 5. ДНК-лигаза (сшивает фрагменты Оказаки , соединяет 2 цепи ДНК ).