Беспроводные технологии позволили снова соединить разорванные участки нервной системы. Главные проводящие пути спинного мозга

Кандидат медицинских наук Павел Мусиенко, Институт физиологии им. И. П. Павлова РАН (Санкт-Петербург).

Спинной мозг можно «научить» обслуживать двигательные функции, даже когда его связь с головным мозгом нарушена в результате травмы, и более того - заставить формировать новые связи «в обход» травмы. Для этого нужны электрохимические нейропротезы, стимуляция и тренировка.

Посредством введения химических веществ воздействуют на нейрональные рецепторы, вызывая определённые эффекты возбуждения или торможения нейронов спинного мозга ниже уровня повреждения.

При параличе можно электрическим током стимулировать сенсорные волокна спинного мозга и через них - спинальные нейроны (А). Благодаря электрической стимуляции (ЭС) животное с повреждением спинного мозга может ходить (Б).

Двигательные навыки при параличе можно тренировать с помощью специально сконструированной робототехнической системы. Робот при необходимости поддерживает и контролирует перемещения животного по трём направлениям (x, y, z) и вокруг вертикальной оси

Мультисистемная нейрореабилитация (специфическая тренировка + электрохимическая стимуляция) восстанавливает произвольный контроль движений за счёт образования новых межнейронных связей в спинном мозге и в стволе головного мозга.

Для электрической стимуляции нескольких сегментов спинного мозга и многокомпонентной фармакологической стимуляции специфических нейрональных рецепторов на спинальных сетях могут быть созданы специальные нейропротезы - набор электродов и хемотродов.

Травмы спинного мозга редко сопровождаются полным анатомическим перерывом. Оставшиеся неповреждёнными нервные волокна могут способствовать функциональному восстановлению.

Традиционная нейрофизиологическая картина управления движением отводила спинному мозгу функции канала, по которому распространяются нервные импульсы, связывающие головной мозг с телом, и примитивного рефлекторного контроля. Однако данные, накопленные нейрофизиологами в последнее время, заставляют пересмотреть эту скромную роль. Новые технологии исследования позволили обнаружить в спинном мозге многочисленные сети его «собственных» нейронов, специализированных на выполнении сложнейших двигательных задач, таких как координированная ходьба, сохранение равновесия, контроль скорости и направления при движении.

Можно ли использовать эти нейронные системы спинного мозга для восстановления двигательных функций у людей, парализованных в результате спинальной травмы?

При травме спинного мозга пациент утрачивает двигательные функции потому, что нарушается или полностью разрывается связь между головным мозгом и телом: сигнал не проходит, и ниже места повреждения не происходит активации двигательных нейронов. Так, травма шейного отдела спинного мозга может привести к параличу и потере функций рук и ног, так называемой тетраплегии, а травма грудного отдела - к параплегии, обездвиживанию только нижних конечностей: как если бы подразделения некоей армии, сами по себе функциональные и боеспособные, оказались отрезаны от штаба и прекратили получать команды.

Но главное зло спинальной травмы в том, что любые устойчивые связи, соединяющие нейроны в стабильные функциональные сети, деградируют, если их не активировать снова и снова. С этим феноменом хорошо знакомы те, кто давно не катался на велосипеде или не играл на фортепьяно: многие двигательные навыки утрачиваются, если их не используют. Точно так же в отсутствие активирующих сигналов и тренировки начинают со временем распадаться специализированные на движении нейронные сети спинного мозга. Изменения становятся необратимыми: сеть «разучивается» двигаться.

Можно ли это предотвратить? Ответ, который даёт современная нейрофизиология, обнадёживает.

Нейроны взаимодействуют друг с другом последовательно, по цепочке, вырабатывая химические вещества - медиаторы различного типа. При этом в головном мозге сосредоточена бóльшая часть нейронов, использующих в качестве сигнального «языка» довольно хорошо изученные моноаминергические медиаторы: серотонин, норадреналин, допамин.

На нейронных сетях даже повреждённого спинного мозга остаются рецепторы, способные этот сигнал воспринимать. Следовательно, можно попытаться активировать спинальные сети с помощью соответствующих моноаминергических препаратов, вводя их в нервную ткань спинного мозга извне.

Это обстоятельство легло в основу экспериментов по химической стимуляции.

В 2008 году вместе с группой исследователей из Университета Цюриха (Швейцария) мы попытались активировать спинальные нейронные сети, отвечающие за движение, «сажая» на сохранные рецепторы спинальных нейронов вещества, соответствующие моноаминергическим медиаторам. Эти препараты должны были служить источником сигнала, активирующего нейронные сети спинного мозга и предотвращающего их деградацию. Результат эксперимента оказался положительным, более того, были найдены оптимальные сочетания моноаминергических лекарств для улучшения функции ходьбы и баланса. Работа опубликована в 2011 году в журнале «Neuroscience».

Спинной мозг отличает высокая системная нейрональная пластичность: его нейронные сети способны постепенно «запоминать» те задачи, которые им приходится выполнять регулярно. Регулярное воздействие на определённые сенсорные и моторные пути при двигательных тренировках улучшает работу этих нейронных путей и восстанавливает способности к выполнению тренируемых функций.

Но если нейронные сети спинного мозга можно тренировать, то нельзя ли их чему-нибудь «научить» - например, с помощью стимуляции повреждённого спинного мозга и двигательной тренировки добиться такой функциональной перестройки его нейронных сетей, которая бы с бóльшим или меньшим успехом контролировала двигательную активность самостоятельно, в отрыве от «главного штаба» - головного мозга?

Чтобы ответить на этот вопрос, мы попробовали сочетать химическую нейростимуляцию с электрической. Ещё в 2007 году совместные эксперименты российских и американских нейрофизиологов показали, что если на поверхность спинного мозга крысы поместить электроды, то электрическое поле вокруг активного электрода может возбуждать проводящие спинальные структуры. Поскольку в эксперименте использовались очень небольшие токи, в первую очередь активировались наиболее возбудимые ткани вблизи электрода: толстые проводящие волокна задних спинномозговых корешков, передающие сенсорную информацию от рецепторов тканей конечностей к нейронам спинного мозга. Такая электростимуляция позволяла активизировать двигательные функции у спинальных животных.

Комбинирование электростимуляции, химической стимуляции и двигательной тренировки дало прекрасный результат. При полном разрыве связей спинного мозга с головным «спящие» спинальные нейронные сети удавалось превратить в высоко функционально активные. Парализованным животным вводили нейрофармакологические препараты, их спинной мозг стимулировали в двух сегментах, и постоянно проводились тренировки функции ходьбы. В результате через несколько недель животные показывали движения, близкие к нормальным, и могли адаптироваться к изменению скорости и направления передвижения.

В первых экспериментах исследователи тренировали животных, используя беговую дорожку и биомеханическую систему, которая помогала животному держать тело на весу, но не позволяла двигаться вперёд. Недавно, в 2012 году, в журналах «Science» и «Nature Medicine» опубликованы результаты совместных исследований Университета Цюриха и Института физиологии им. И. П. Павлова РАН, в которых мы применили робототехнический подход.

Специальный робот даёт крысе возможность свободно передвигаться, при необходимости поддерживая и контролируя её перемещения по трём направлениям (x, y, z). Причём сила воздействия по различным осям может меняться в зависимости от экспериментальной задачи и собственных двигательных способностей животного. В робототехнической установке использованы мягкие эластичные приводы и спирали, которые устраняют инерционное влияние силовых воздействий на живой объект. Это даёт возможность применять установку в поведенческих опытах. Робот опробован на экспериментальной модели парализованной крысы с повреждениями противоположных половин спинного мозга на уровне разных спинномозговых сегментов. Связь между головным и спинным мозгом была полностью прервана, однако сохранялась возможность прорастания новых нервных волокон между левой и правой частями спинного мозга. (Данная модель имеет сходство с повреждениями спинного мозга у людей, которые чаще всего являются анатомически неполными.) Комбинация тренировки в робототехнической системе с многокомпонентной химической и электрической стимуляцией спинного мозга позволила таким животным ходить вперёд по прямой, переступать через препятствия и даже подниматься по лестнице. У крыс появились новые межнейронные связи в области повреждения спинного мозга и восстановился произвольный контроль движений.

Так родилась идея электрохимических нейропротезов для имплантации в спинной мозг и управления спинальными сетями. Через специальные каналы имплантата можно вводить лекарства, которые действуют на соответствующие рецепторы и имитируют модулирующий нервный сигнал, прерванный после травмы. Матрица электродов стимулирует сенсорные входы разных сегментов и через них активирует отдельные популяции нейронов, чтобы таким образом вызвать определённые движения.

Стандартный клинический подход лечения пациентов с тяжёлыми спинальными травмами направлен на предотвращение дальнейших вторичных повреждений нервной системы, соматических осложнений паралича, на психологическую помощь парализованным больным и обучение их использованию оставшихся функций. Восстановительная терапия утраченных моторных навыков при тяжёлых повреждениях спинного мозга не только возможна, но и необходима.

Экспериментальная работа над химическим нейропротезом пока не шагнула дальше лабораторных исследований над животными, но в 2011 году авторитетный медицинский журнал «The Lancet» дал яркую иллюстрацию того, на что способна стимулирующая терапия в отношении людей. Журнал опубликовал результаты клинико-экспериментальной работы с использованием электрической стимуляции спинного мозга. Нейрофизиологи и врачи из США и России показали, что регулярная тренировка определённых моторных навыков в сочетании с эпидуральной стимуляцией спинного мозга восстанавливала двигательные способности у пациента c полной моторной параплегией, то есть полной утратой контроля над движением. Лечение улучшило функции стояния и поддержания веса тела, элементы локомоторной активности и частичного произвольного контроля движений во время стимуляции.

В результате тренировки и стимуляции удалось не только активировать нейронные сети ниже уровня повреждения, но и в определённой степени восстановить связь между головным мозгом и спинальными моторными центрами - уже упомянутая нейропластичность спинного мозга сделала возможным образование новых нейронных связей, «обходящих» место травмы.

Экспериментальные и клинические исследования показывают высокую эффективность стимуляции спинного мозга и тренировки после тяжёлой вертеброспинальной травмы. Хотя уже получены успешные результаты стимуляции спинного мозга у пациентов с сильнейшим параличом, основная часть исследовательской работы ещё впереди. Кроме того, предстоит разработать спинальные имплантаты для электрохимической стимуляции и найти оптимальные алгоритмы их использования. На всё это сейчас направлены активные усилия ведущих лабораторий мира. Сотни самостоятельных и межлабораторных исследовательских проектов посвящены достижению этих целей. Остаётся надеяться, что в результате совместных усилий мировых научных центров в общепринятые клинические стандарты войдут более эффективные методы лечения парализованных больных.

ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА

ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА

Проводящими путями называют пучки функционально однородных нервных волокон, соединяющие различные центры в центральной нервной системе, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковые импульсы.

Импульсы, возникающие при воздействии на рецепторы, передаются по отросткам нейронов к их телам. Благодаря многочисленным синапсам нейроны контактируют друг с другом, образуя цепи, по которым нервные импульсы распространяются только в определенном направлении - от рецепторных нейронов через вставочные к эффекторным нейронам. Это обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение (нервные импульсы) только в одном направлении - от пресинаптической мембраны к постсинаптической.

По одним цепям нейронов импульс распространяется центростремительно - от места возникновения в коже, слизистых оболочках, органах движения, сосудах к спинному или головному мозгу. По другим цепям нейронов импульс проводится центробежно из мозга на периферию к рабочим органам - мышцам и железам. Отростки нейронов направляются из спинного мозга к различным структурам головного мозга, а от них в обратном

Рис. 44. Расположение пучков ассоциативных волокон белого вещества правого полушария большого мозга, медиальная поверхность (схема): 1 - поясная извилина; 2 - верхний продольный пучок; 3 - дугообразные волокна большого мозга; 4 - нижний продольный пучок

направлении - к спинному мозгу и образуют пучки, соединяющие между собой нервные центры. Эти пучки и составляют проводящие пути.

В спинном и головном мозге выделяют три группы нервных волокон (проводящих путей): ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (короткие и длинные) соединяют между собой группы нейронов (нервные центры), расположенные в одной половине мозга (рис. 44). Короткие (внутридолевые) ассоциативные пути соединяют близлежащие участки серого вещества и располагаются, как правило, в пределах одной доли мозга. Среди них выделяют дугообразные волокна большого мозга (fibrae arcuatae), которые изгибаются дугообразно и соединяют между собой серое вещество соседних извилин, не выходя за пределы коры (интракортикальные) или проходя в белом веществе полушария (экстракортикальные). Длинные (междолевые) ассоциативные пучки соединяют между собой участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных долях. К ним относятся верхний продольный пучок (fasciculus longitudinalis superior), проходящий в верхних слоях белого вещества полушария и соединяющий кору лобной доли с теменной и затылочной;

нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних слоях белого вещества полушария и связывающий серое вещество височной доли с затылочной, и крючковидный пучок (fasciculus uncipatus), соединяющий кору в области лобного полюса с передней частью височной доли. Волокна крючковидного пучка изгибаются дугообразно вокруг островка.

В спинном мозге ассоциативные волокна соединяют между собой нейроны, расположенные в различных сегментах, и образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, длинные соединяют далеко отстоящие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна соединяют одинаковые центры (серое вещество) правого и левого полушарий большого мозга, образуя мозолистое тело, спайку свода и переднюю спайку (рис. 45). Мозолистое тело соединяет между собой новые отделы коры большого мозга правого и левого полушарий. В каждом полушарии волокна расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callori). Передние пучки волокон, проходящие в колене и клюве мозолистого тела, соединяют кору передних отделов лобных долей, образуя лобные щипцы (forceps frontalis). Эти волокна как бы охватывают с двух сторон переднюю часть продольной щели головного мозга. Кору затылочных и задних отделов теменных долей большого мозга соединяют пучки волокон, проходящие в валике мозолистого тела. Они образуют так называемые затылочные щипцы (forceps occipitalis). Изгибаясь кзади, пучки этих волокон как бы охватывают задние отделы продольной щели большого мозга. Волокна, проходящие в центральных отделах мозолистого тела, связывают кору центральных извилин, теменных и височных долей полушарий большого мозга.

В передней спайке проходят волокна, соединяющие между собой участки коры височных долей обоих полушарий, принадлежащие обонятельному мозгу. Волокна спайки свода соединяют серое вещество гиппокампов и височных долей обоих полушарий.

Проекционные нервные волокна (проводящие пути) подразделяются на восходящие и нисходящие. Восходящие связывают спинной мозг с головным, а также ядра мозгового ствола с базальными ядрами и корой полушарий большого мозга. Нисходящие идут в обратном направлении (табл. 1).

Рис. 45. Комиссуральные волокна (лучистость) мозолистого тела, вид сверху. Верхние отделы лобных, теменных и затылочных долей большого мозга удалены: 1 - лобные щипцы (большие щипцы); 2 - мозолистое тело; 3 - медиальная продольная полоска; 4 - латеральная продольная полоска; 5 - затылочные щипцы

(малые щипцы)

Восходящие проекционные пути являются афферентными, чувствительными. По ним к коре большого мозга поступают нервные импульсы, возникшие в результате воздействия на организм различных факторов внешней среды, включая импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов. В зависимости от этого восходящие проекционные пути делятся на три группы: экстероцептивные, проприоцептивные и интероцептивные проводящие пути.

Экстероцептивные проводящие пути несут импульсы от кожного покрова (болевые, температурные, осязания и давления), от органов чувств (зрения, слуха, вкуса, обоняния). Проводящий путь болевой и температурной чувствительности (латеральный спинноталамический путь, tractus spinothalamicus lateralis) состоит из трех нейронов (рис. 46). Рецепторы первых (чувствительных) нейронов, воспринимающие указанные раздражения, располагаются в коже и слизистых оболочках, а тела клеток лежат в спинномозговых узлах. Центральные отростки в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках вторых нейронов. Все аксоны вторых нейронов, тела которых лежат в заднем роге, через переднюю серую спайку переходят на противоположную сторону спинного мозга, входят в боковой канатик, включаются в состав латерального спинноталамического пути, который поднимается в продолговатый мозг (кзади от ядра оливы), проходит в покрышке моста и в покрышке среднего мозга, проходя у наружного края медиальной петли. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в задне-латеральном ядре таламуса (третий нейрон). Аксоны этих клеток проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata), направляются к нейронам внутренней зернистой пластинки коры (IV слой) постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокортикальные пучки (fasciculi thalamocorticales) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинноталамический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления (передний спинноталамический путь, tractus spinothalamicus anterior) несет импульсы от кожи, где лежат

Таблица 1. Проводящие пути головного и спинного мозга

Продолжение таблицы 1.

Продолжение таблицы 1

Окончание таблицы 1.

Рис. 46. Проводящие пути болевой и температурной чувствительности,

осязания и давления (схема): 1 - латеральный спинноталамический путь; 2 - передний спинноталамический путь; 3 - таламус; 4 - медиальная петля; 5 - поперечный разрез среднего мозга; 6 - поперечный разрез моста; 7 - поперечный разрез продолговатого мозга; 8 - спинномозговой узел; 9 - поперечный разрез спинного мозга. Стрелками показано направление движения нервных импульсов

рецепторы, к клеткам коры постцентральной извилины. Тела первых нейронов (псевдоуниполярных клеток) лежат в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга. Аксоны нейронов спинномозговых узлов образуют синапсы с нейронами заднего рога спинного мозга (вторые нейроны). Большинство аксонов второго нейрона также переходят на противоположную сторону спинного мозга через переднюю спайку, входят в передний канатик и в его составе следуют вверх, к таламусу. Часть волокон второго нейрона идут в заднем канатике спинного мозга и в продолговатом мозге присоединяются к волокнам медиальной петли. Аксоны второго нейрона образуют синапсы с нейронами задне-латерального ядра таламуса (третий нейрон). Отростки клеток третьего нейрона проходят через заднюю ножку внутренней капсулы, затем в составе лучистого венца направляются к нейронам IV слоя коры постцентральной извилины (внутренней зернистой пластинке). Не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего катика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути проводят импульсы от мышц, сухожилий, суставных капсул, связок. Они несут информацию о положении частей тела в пространстве, объеме движений. Проприоцептивная чувствительность позволяет человеку анализировать собственные сложные движения и проводить их целенаправленную коррекцию. Выделяют проприоцептивные пути коркового направления и проприоцептивные пути мозжечкового направления. Проводящий путь проприоцептивной чувствительности коркового направления несет импульсы мышечно-суставного чувства к коре постцентральной извилины большого мозга (рис. 47). Рецепторы первых нейронов, расположенные в мышцах, сухожилиях, суставных капсулах, связках, воспринимают сигналы о состоянии опорно-двигательного аппарата в целом, мышечном тонусе, степени растяжения сухожилий и по спинномозговым нервам направляют эти сигналы к телам первых нейронов этого пути, которые лежат в спинномозговых узлах. Тела

Рис. 47. Проводящий путь проприоцептивной чувствительности

коркового направления (схема): 1 - спинномозговой узел; 2 - поперечный разрез спинного мозга;

3 - задний канатик спинного мозга;

4 - передние наружные дугообразные волокна; 5 - медиальная петля; 6 - таламус; 7 - поперечный разрез среднего мозга; 8 - поперечный разрез моста; 9 - поперечный разрез продолговатого мозга; 10 - задние наружные дугообразные волокна. Стрелками показано направление движения

нервных импульсов

первого нейрона этого пути также лежат в спинномозговых узлах. Аксоны первых нейронов в составе заднего корешка, не входя в задний рог, направляются в задний канатик, где образуют тонкий и клиновидный пучки.

Аксоны, несущие проприоцептивные импулься, входят в задний канатик, начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища.

Волокна в составе тонкого и клиновидного пучков следуют наверх в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах вторых нейронов. Аксоны вторых нейронов, выходящие из этих ядер, дугообразно изгибаются вперед и медиально и на уровне нижнего угла ромбовидной ямки переходят на противоположную сторону в межоливном слое продолговатого мозга, образуя перекрест медиальной петли (decussatio lemniscorum medialium). Это внутренние дугообразные волокна (fibrae arcuatae internae), которые формируют начальные отделы медиальной петли. Затем волокна медиальной петли проходят вверх через покрышку моста и покрышку среднего мозга, где располагаются дорсально-латеральнее красного ядра. Эти волокна заканчиваются в дорсальном латеральном ядре таламуса синапсами на телах третьих нейронов. Аксоны клеток таламуса направляются через заднюю ножку внутренней капусулы в составе лучистого венца в кору постцентральной извилины, где образуют синапсы с нейронами IV слоя коры (внутренней зернистой пластинки).

Другая часть волокон вторых нейронов (задние наружные дугообразные волокна, efibrae arcueatae exteernae posterieores) по выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку своей стороны и заканчивается синапсами в коре червя. Третья часть аксонов вторых нейронов (передние наружные дугообразные волокна, fibrae arcudtae extdrnae anterieores) переходит на противоположную сторону и также через нижнюю мозжечковую ножку противоположной стороны направляется к коре червя. Проприоцептивные импульсы по этим волокнам идут к мозжечку для коррекции подсознательных движений опорно-двигательного аппарата.

Итак, проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом мозге. При повреждении

спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Имеются проприоцептивные проводящие пути мозжечкового направления - передний и задний спинномозжечковые проводящие пути, которые несут в мозжечок информацию о состоянии опорно-двигательного аппарата и двигательных центров спинного мозга.

Задний спинномозжечковый проводящий путь (пучок Флексига) (tractus spinocerebellaris posterior) (рис. 48) несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, связках в мозжечок. Тела первых нейронов (псевдоуниполярных клеток) расположены в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга, где образуют синапсы с нейронами грудного ядра (столб Кларка), лежащего в медиальной части основания заднего рога (вторые нейроны). Аксоны вторых нейронов проходят в задней части бокового

Рис. 48. Задний спинеомозжечковый проводящий путь:

1 - поперечный разрез спинного мозга; 2 - поперечный разрез продолговатого мозга; 3 - кора мозжечка; 4 - зубчатое ядро; 5 - шаровидное ядро; 6 - синапс в коре червя мозжечка; 7 - нижняя мозжечковая ножка; 8 - дорсальный (задний) спинномозжечковый путь; 9 - спинномозговой узел

канатика спинного мозга своей стороны, поднимаются вверх и через нижнюю мозжечковую ножку направляются в мозжечок, где образуют синапсы с клетками коры червя мозжечка (задне-нижние отделы).

Передний спинномозжечковый проводящий путь (пучок Говерса) (tractus spinocerebellaris anterior) (рис. 49) также несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, в мозжечок. Эти импульсы по волокнам спинномозговых нервов, являющихся периферическими отростками псевдоуниполярных клеток спинномозговых узлов (первые нейроны), направляются в задний рог, где образуют синапсы с нейронами центрального промежуточного (серого) вещества спинного мозга (вторые нейроны). Аксоны этих волокон переходят через переднюю серую спайку на противоположную сторону в переднюю часть бокового канатика спинного мозга и поднимаются вверх. На уровне перешейка ромбовидного мозга эти волокна образуют второй перекрест, возвращаются на свою сторону и через верхнюю мозжечковую ножку входят в мозжечок к клеткам передне-верхних отделов коры червя

Рис. 49. Передний спинномозжечковый проводящий путь: 1 - поперечный разрез спинного мозга; 2 - передний спинномозжечковый путь; 3 - поперечный разрез продолговатого мозга; 4 - синапс в коре червя мозжечка; 5 - шаровидное ядро; 6 - кора мозжечка; 7 - зубчатое ядро; 8 - спинномозговой узел

мозжечка. Таким образом, передний спинномозжечковый путь, сложный и дважды перекрещенный, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по спинномозжечковым проприоцептивным путям, передаются в красные ядра и через зубчатое ядро в кору большого мозга (в постцентральную извилину) по мозжечково-таламическому и мозжечково-покрышечному путям (рис. 50).

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к таламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Интероцептивные проводящие пути проводят импульсы от внутренних органов, сосудов, тканей организма. Их механо-, баро-, хеморецепторы воспринимают информацию о состоянии гомеостаза (интенсивности обменных процессов, химическом составе тканевой жидкости и крови, давлении в сосудах и т. д.).

В кору полушарий большого мозга поступают импульсы по прямым восходящим чувствительным путям и из подкорковых центров.

Из коры полушарий большого мозга и подкорковых центров (из ядер ствола мозга) берут начало нисходящие пути, управляющие двигательными функциями организма (произвольными движениями).

Нисходящие двигательные проводящие пути проводят импульсы к нижележащим отделам центральной нервной системы - к ядрам мозгового ствола и к двигательным ядрам передних рогов спинного мозга. Эти пути подразделяются на пирамидные и экстрапирамидные. Пирамидные проводящие пути являются главными двигательными путями.

Рис. 50. Мозжечково-таламический и мозжечково-покрышечный проводящие

1 - кора полушарий большого мозга; 2 - таламус; 3 - поперечный разрез среднего мозга; 4 - красное ядро; 5 - мозжечково-таламический путь; 6 - мозжечково-покрышечный путь; 7 - шаровидное ядро мозжечка; 8 - кора мозжечка; 9 - зубчатое ядро; 10 - пробковидное ядро

Через подконтрольные сознанию двигательные ядра головного и спинного мозга они несут импульсы из коры большого мозга к скелетным мышцам головы, шеи, туловища, конечностей. несут импульсы от подкорковых центров и различных отделов коры также к двигательным и другим ядрам черепных и спинномозговых нервов.

Главный двигательный, или пирамидный, проводящий путь представляет собой систему нервных волокон, по которым произвольные двигательные импульсы от пирамидной формы невроцитов (пирамидных клеток Беца), расположенных в коре предцентральной извилины (V слой), направляются к двигательным ядрам черепных нервов и к передним рогам спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится на корково-ядерный путь, идущий к ядрам черепных нервов, и корково-спинномозговой путь. В последнем выделяют латеральный и передний корково-спинномозговые (пирамидные) проводящие пути, идущие к ядрам передних рогов спинного мозга (рис. 51).

Корково-ядерный проводящий путь (tractus corticonuclearis) представляет собой пучок аксонов гигантопирамидных клеток, залегающих в нижней трети предцентральной извилины. Аксоны этих клеток (первый нейрон) проходят через колено внутренней капсулы, основание ножки мозга. Затем волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI и XII - в продолговатом мозге, где и заканчиваются синапсами на их нейронах (вторые нейроны). Аксоны двигательных нейронов ядер черепных нервов выходят из головного мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи. Они осуществляют управление осознанными движениями мышц головы и шеи.

Латеральный и передний корково-спинномозговые (пирамидные) проводящие пути (tractus corticospinales (pyramidales) anterior et lateralis) управляют осознанными движениями мышц туловища и конечностей. Они начинаются от пирамидной формы невроцитов (клеток Беца), расположенных в V слое коры средней и верхней третей предцентральной извилины (первые нейроны). Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки, позади волокон корково-ядерного пути. Затем волокна через основание ножки мозга (латеральнее волокон корково-ядерного пути) переходят

Рис. 51. Схема пирамидных проводящих путей:

1 - предцентральная извилина; 2 - таламус; 3 - корково-ядерный путь; 4 - поперечный разрез среднего мозга; 5 - поперечный разрез моста; 6 - поперечный разрез продолговатого мозга; 7 - перекрест пирамид; 8 - латеральный корково-спинномозговой путь; 9 - поперечный разрез спинного мозга; 10 - передний корковоспинномозговой путь. Стрелками показано направление движения нервных импульсов

через мост в пирамиду продолговатого мозга. На границе продолговатого мозга со спинным часть волокон корково-спинномозгового пути переходит на противоположную сторону на границе продолговатого мозга со спинным. Затем волокна продолжаются в боковой канатик спинного мозга (латеральный корково-спинномозговой проводящий путь) и постепенно заканчиваются в передних рогах спинного мозга синапсами на двигательных клетках (корешковых нейроцитах) передних рогов (второй нейрон).

Волокна корково-спинномозгового проводящего пути, не переходящие на противоположную сторону на границе продолговатого мозга со спинным, спускаются вниз в составе переднего канатика спинного мозга, образуя передний корково-спинномозговой проводящий путь. Эти волокна посегментно переходят на противоположную сторону через белую спайку спинного мозга и заканчиваются синапсами на двигательных (корешковых) невроцитах переднего рога противоположной стороны спинного мозга (вторые нейроны). Аксоны клеток передних рогов выходят из спинного мозга в составе передних корешков и, являясь частью спинномозговых нервов, иннервируют скелетные мышцы. Итак, все пирамидные проводящие пути являются перекрещенными. Поэтому при одностороннем повреждении спинного мозга или головного мозга развивается паралич мышц противоположной стороны, которые иннервируются из сегментов, расположенных ниже зоны повреждения.

Экстрапирамидные проводящие пути имеют связи с ядрами ствола мозга и с корой полушарий большого мозга, которая управляет экстрапирамидной системой. Влияние коры большого мозга осуществляется через мозжечок, красные ядра, ретикулярную формацию, связанную с таламусом и полосатым телом, через вестибулярные ядра. Одной из функций красных ядер является поддержание мышечного тонуса, необходимого для непроизвольного удержания тела в равновесии. Красные ядра, в свою очередь, получают импульсы из коры полушарий большого мозга, из мозжечка. От красного ядра нервные импульсы направляются к двигательным ядрам передних рогов спинного мозга (красноядерноспинномозговой путь) (рис. 52).

Красноядерно-спинномозговой путь (tractus rubrospinalis) поддерживает тонус скелетных мышц и управляет автоматическими привычными движениями. Первые нейроны этого пути залегают в красном ядре среднего мозга. Их аксоны переходят на противоположную сторону в среднем мозге (перекрест Фореля), проходят через покрышку ножек мозга,

Рис. 52. Красноядерно-спинномозговой проводящий путь (схема): 1 - разрез среднего мозга; 2 - красное ядро; 3 - красноядерно-спинномозговой путь; 4 - кора мозжечка; 5 - зубчатое ядро мозжечка; 6 - разрез продолговатого мозга; 7 - разрез спинного мозга. Стрелками показано направление движения

нервных импульсов

покрышку моста и продолговатый мозг. Далее аксоны следуют в составе бокового канатика спинного мозга противоположной стороны. Волокна красноядерно-спинномозгового пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Аксоны этих клеток участвуют в формировании передних корешков спинномозговых нервов.

Преддверно-спинномозговой проводящий путь (tr a ctus vestibulospinalis, или пучок Левенталя), поддерживает равновесие тела и головы в пространстве, обеспечивает установочные реакции тела при нарушении равновесия. Первые нейроны этого пути залегают в латеральном ядре (Дейтерса) и нижнем вестибулярном ядре продолговатого мозга и моста (преддверноулитковый нерв). Эти ядра связаны с мозжечком и задним продольным пучком. Аксоны нейронов вестибулярных ядер проходят в продолговатом мозге, затем в составе переднего канатика спинного мозга на границе с боковым канатиком (своей стороны). Волокна этого пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны), аксоны которых участвуют в формировании передних (двигательных) корешков спинно-мозговых нервов. Задний продольный пучок (fasciculus longitudinalis post e rior), в свою очередь, связан с ядрами черепных нервов. Это обеспечивает сохранение положения глазного яблока при движениях головы и шеи.

Ретикуло-спинномозговой путь (tractus reticulospinalis) поддерживает тонус скелетных мышц, регулирует состояние спинномозговых вегетативных центров. Первые нейроны этого пути залегают в ретикулярной формации ствола мозга (промежуточное ядро Кахаля, ядро эпиталамической (задней) спайки Даркшевича и др.). Аксоны нейронов этих ядер проходят через средний мозг, мост, продолговатый мозг. Аксоны нейронов промежуточного ядра (Кахаля) не перекрещиваются, они проходят в составе переднего канатика спинного мозга своей стороны. Аксоны клеток ядра эпиталамической спайки (Даршкевича) проходят на противоположную сторону через эпиталамическую (заднюю) спайку и идут в составе переднего канатика противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны).

Покрышечно-спинальный путь (tractus tectospinalis) осуществляет связи четверохолмия со спинным мозгом, передает влияния подкорковых центров зрения и слуха на тонус скелетной мускулатуры, участвует в формировании защитных рефлексов. Первые нейроны лежат в ядрах верхних

и нижних холмиков четверохолмия среднего мозга. Аксоны этих клеток проходят через мост, продолговатый мозг, переходят на противоположную сторону под водопроводом мозга, образуя фонтановидный, или мейнертовский, перекрест. Далее нервные волокна проходят в составе переднего канатика спинного мозга противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Их аксоны участвуют в формировании передних (двигательных) корешков спинномозговых нервов.

Корково-мозжечковый проводящий путь (tractus corticocerebellaris) осуществляет управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей. Первые нейроны этого пути залегают в коре лобной, височной, теменной и затылочной долей большого мозга. Аксоны нейронов лобной доли (лобно-мостовые волокна - пучок Арнольда) направляются во внутреннюю капсулу и проходят через ее переднюю ножку. Аксоны нейронов височной, теменной и затылочной долей (теменно-височно-затылочно-мостовые волокна - пучок Тюрка) проходят в составе лучистого венца, затем через заднюю ножку внутренней капсулы. Все волокна следуют через основание ножки мозга в мост, где заканчиваются синапсами на нейронах собственных ядер моста своей стороны (вторые нейроны). Аксоны этих клеток переходят на противоположную сторону в виде поперечных волокон моста, затем в составе средней мозжечковой ножки следуют в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, замыкают сложные рефлекторные дуги в теле человека. Одни рефлекторные пути замыкаются на ядрах, лежащих в мозговом стволе и обеспечивающих функции с определенным автоматизмом, без участия сознания, хотя и под контролем полушарий большого мозга. Другие рефлекторные пути замыкаются с участием функций коры полушарий большого мозга, высших отделов центральной нервной системы и обеспечивают произвольные действия органов аппарата движения.

Спинной мозг человека является важнейшим органом центральной нервной системы, осуществляющий связь всех органов с ЦНС и проводящий рефлексы. Он покрыт сверху тремя оболочками:

  • твердой , паутинной и мягкой

Между паутинной и мягкой (сосудистой) оболочкой и в центральном его канале находится спинномозговая жидкость (ликвор )

В эпидуральном пространстве (промежуток между твердой мозговой оболочкой и поверхностью позвоночника) — сосуды и жировая ткань

Строение и функции спинного мозга человека

Что представляет из себя спинной мозг по внешнему строению?

Это — длинный шнур в позвоночном канале, в виде тяжа цилиндрической формы, длиной примерно 45 мм, шириной около 1 см, более плоский спереди и сзади, чем по бокам. Он имеет условную верхнюю и нижнюю границы. Верхняя начинается между линией большого затылочного отверстия и первым шейным позвонком: в этом месте спинной мозг соединяется с головным посредством промежуточного продолговатого. Нижняя — на уровне 1 -2 поясничных позвонков, после которых шнур принимает конический вид и далее «вырождается» в тонкую спинномозговую нить (терминальную ) с диаметром около 1 мм, которая тянется до второго позвонка копчикового отдела. Терминальная нить состоит из двух частей — внутренней и наружной:

  • внутренняя — длиной примерно 15 см, состоит из нервной ткани, переплетена поясничными и крестцовыми нервами и находится в мешочке из твердой мозговой оболочки
  • наружная — около 8 см, начинается ниже 2-го позвонка крестцового отдела и тянется в виде соединения твердой, паутинной и мягкой оболочек до 2-го копчикового позвонка и сращивается с надкостницей

Наружная, свисающая до самого копчика терминальная нить с переплетающими ее нервными волокнами очень напоминает по виду конский хвост. Поэтому боли и явления, возникающие при защемлении нервов ниже 2-го крестцового позвонка, часто называют синдромом конского хвоста .

Спинной мозг имеет утолщения в шейном и пояснично-крестцовом отделах. Это находит свое объяснение в наличии большого количества выходящих нервов в этих местах, идущих к верхним, а также к нижним конечностям:

  1. Шейное утолщение распространено на протяженности от 3-го — 4-го шейного позвонков до 2-го грудного, достигая максимума в 5-м — 6-м
  2. Пояснично-крестцовое — от уровня 9-го — 10-го грудного позвонков до 1-го поясничного с максимумом в 12-м грудном

Серое и белое вещество спинного мозга

Если рассмотреть строение спинного мозга в поперечном разрезе, то в центре его можно увидеть серый участок в виде раскрывшей свои крылья бабочки. Это — серое вещество спинного мозга. Оно окружено снаружи белым веществом. Клеточное строение серого и белого вещества отличается между собой, как и их функции.


Серое вещество спинного мозга состоит из двигательных и вставочных нейронов :

  • двигательные нейроны передают двигательные рефлексы
  • вставочные — обеспечивают связь между самими нейронами

Белое вещество состоит из так называемых аксонов — нервных отростков, из которых создаются волокна нисходящих и восходящих проводящих путей.

Крылья «бабочки» более узкие образуют передние рога серого вещества, более широкие — задние . В передних рогах находятся двигательные нейроны , в задних — вставочные . Между симметричными боковыми частями имеется поперечная перемычка из мозговой ткани, в центре которой проходит канал, сообщающийся верхней частью с желудочком мозга и заполненный спинномозговой жидкостью. В некоторых отделах или даже по всей протяженности у взрослых людей центральный канал может зарастать.

Относительно этого канала, слева и справа от него, серое вещество спинного мозга выглядит как столбы симметричной формы, соединенные между собой передними и задними спайками:

  • передние и задние столбы соответствуют передним и задним рогам на поперечном срезе
  • боковые выступы образуют боковой столб

Боковые выступы есть не на всей протяженности, а только между 8-м шейным и 2-м поясничным сегментами. Поэтому поперечный срез в сегментах, где отсутствуют боковые выступы, имеет овальную либо круглую форму.

Соединение симметричных столбов в передней и задней частях образует на поверхности мозга две борозды: переднюю, более глубокую, и заднюю. Передняя щель заканчивается перегородкой, примыкающей к задней границе серого вещества.

Спинномозговые нервы и сегменты

Слева и вправо от этих центральных борозд расположены соответственно переднелатеральные и заднелатеральные борозды, через которые выходят передние и задние нити (аксоны ), образующие нервные корешки. Передний корешок по своему строению представляет из себя двигательные нейроны переднего рога. Задний, отвечающий за чувствительность, состоит из вставочных нейронов заднего рога. Сразу на выходе из мозгового сегмента и передний и задний корешок объединяются в один нерв или нервный узел (ганглий ). Так как всего в каждом сегменте имеется два передних и два задних корешках, в сумме они образуют два спинномозговых нерва (по одному с каждой стороны). Теперь нетрудно подсчитать, сколько всего нервов имеет спинной мозг человека.

Для этого рассмотрим его сегментарное строение. Всего имеется 31 сегмент:

  • 8 — в шейном отделе
  • 12 — в грудном
  • 5 — поясничном
  • 5 — в крестцовом
  • 1 — в копчиковом

Значит спинной мозг имеет всего 62 нерва — по 31 с каждой стороны.

Отделы и сегменты спинного мозга и позвоночника находятся не на одном уровне, из-за разницы в длине (спинной мозг короче позвоночника). Это надо учитывать при сопоставлении мозгового сегмента и номера позвонка при проведении рентгенологии и томографии: если в начале шейного отдела этот уровень соответствует номеру позвонка, а в нижней его части лежит на позвонок выше, то в крестцовом и копчиковом отделе эта разница составляет уже несколько позвонков.

Две важных функции спинного мозга

Спинной мозг выполняет две важные функции — рефлекторную и проводниковую . Каждый его сегмент связан с конкретными органами, обеспечивая их функциональность. Например:

  • Шейный и грудной отдел — связывается с головой, руками, органами грудной клетки, мышцы груди
  • Поясничный отдел — органы ЖКТ, почки, мышечная система туловища
  • Крестцовый отдел — органы таза, ноги

Рефлекторные функции — это простые, заложенные природой рефлексы. Например:

  • болевая реакция — отдернуть руку, если больно.
  • коленный рефлекс

Рефлексы могут осуществляться без участия головного мозга

Это доказывается простыми опытами на животных. Биологи проводили эксперименты с лягушками, проверяя, как они реагируют на боль при отсутствии головы: была отмечена реакция как на слабые, так и на сильные болевые раздражители.

Проводниковые функции спинного мозга заключаются в проведении импульса по восходящему пути в головной мозг, а оттуда — по нисходящему пути в виде обратной команды какому-то органу

Благодаря этой проводниковой связи, осуществляется любое мысленное действие:
встать, пойти, взять, бросить, поднять, побежать, отрезать, нарисовать — и многие другие, которые человек, не замечая, совершает в своей повседневной жизни в быту и на работе.

Такая уникальная связь между центральным мозгом, спинным, всей ЦНС и всеми органами организма и его конечностям, как и прежде остается мечтой робототехники. Ни один, даже самый современный робот пока не способен осуществить и тысячной доли тех всевозможных движений и действий, которые подвластны биоорганизму. Как правило, такие роботы запрограммированы для узко специализированной деятельности и в основном используются на конвейерных автоматических производствах.

Функции серого и белого вещества. Чтобы понять, как осуществляются эти великолепные функции спинного мозга, рассмотрим строение серого и белого вещества мозга на клеточном уровне.

Серое вещество спинного мозга в передних рогах содержат нервные клетки больших размеров, которые называются эфферентными (двигательными) и объединяются в пять ядер:

  • центральное
  • переднелатеральное
  • заднелатеральное
  • переднемедиальное и заднемедиальное

Чувствительные корешки мелких клеток задних рогов представляют собой специфические клеточные отростки из чувствительных узлов спинного мозга. В задних рогах строение серого вещества неоднородно. Большая часть клеток образуют собственные ядра (центральное и грудное). К пограничной зоне белого вещества, расположенного возле задних рогов, примыкают губчатая и студенистая зоны серого вещества, отростки клеток которых, вместе с отростками мелких диффузно рассеянных клеток задних рогов, образуют синапсы (контакты) с нейронами передних рогов и между соседними сегментами. Эти нейриты получили название передних, боковых и задних собственных пучков. Связь их с головным мозгом осуществляется при помощи проводниковых путей белого вещества. По краю рогов эти пучки образуют белую каемку.

Боковые рога серого вещества выполняет следующие важные функции:

  • В промежуточной зоне серого вещества (боковых рогах) находятся симпатические клетки вегетативной нервной системы, именно посредством их осуществляется связь с внутренними органами. Отростки этих клеток соединяются с передними корешками
  • Здесь образуется спиномозжечковый путь:
    На уровне шейных и верхних грудных сегментов находится ретикулярная зона — пучок из большого количества нервов, связанных с зонами активации коры головного мозга и рефлекторной деятельности.


Сегментарная деятельность серого вещества мозга, задних и передних корешков нервов, собственных пучков белого вещества, окаймляющих серое, называется рефлекторной функцией спинного мозга. Сами же рефлексы называются безусловными , по определению академика Павлова.

Проводниковые функции белого вещества осуществляются посредством трех канатиков — наружными его участками, ограниченными бороздами:

  • Передний канатик — участок между передними срединной и латеральной бороздами
  • Задний канатик — между задними срединной и латеральной бороздами
  • Боковой канатик — между переднелатеральной и заднелатеральной бороздами

Аксоны белого вещества образуют три системы проводимости:

  • короткие пучки, называемые ассоциативными волокнами, которые связывают различные сегменты спинного мозга
  • восходящие чувствительные (афферентные ) пучки, направленные к отделам головного мозга
  • нисходящие двигательные (эфферентные ) пучки, направленные из мозга к нейронам серого вещества передних рогов

Восходящие и нисходящие пути проводимости. Рассмотрим для примера некоторые функции путей канатиков белого вещества:

Передние канатики:

  • Передний пирамидный (корково-спинномозговой) путь — передача двигательных импульсов от коры головного мозга к спинномозговому (передним рогам)
  • Спиноталамический передний путь — передача импульсов осязания воздействия на поверхность кожи (тактильная чувствительность)
  • Покрышечно-спинномозговой путь -связывая зрительные центры под корой головного мозга с ядрами передних рогов, создает защитный рефлекс, вызванный звуковыми или зрительными раздражителями
  • Пучок Гельда и Левенталя (преддверно-спинномозговой путь) — волокна белого вещества связывают вестибулярные ядра восьми пар черепно-мозговых нервов с двигательными нейронами передних рогов
  • Продольный задний пучок — связывая верхние сегменты спинного со стволом мозга, координирует работу глазных мышц с шейными и др.

Восходящие пути боковых канатиков проводят импульсы глубокой чувствительности (ощущения своего тела) по корково-спинномозговым, спиноталамическим и покрышечно-спинномозговым путям.

Нисходящие пути боковых канатиков:

  • Латеральный корково-спинномозговой (пирамидный) — передает импульс движения от коры головного мозга к серому веществу передних рогов
  • Красноядерно-спинномозговой путь (находится впереди латерального пирамидного), сбоку к нему прилегают спинномозжечковый задний и спинноталамический боковой пути.
    Красноядерно-спинномозговой путь осуществляет автоматическое управление движениями и мышечным тонусом на подсознательном уровне.


В разных отделах спинного мозга различное соотношение серого и белого мозгового веществ. Это объясняется разным количеством восходящих и нисходящих путей. В нижних спинномозговых сегментах больше серого вещества. По мере продвижения вверх его становится меньше, а белое вещество наоборот прибавляется, так как добавляются новые восходящие пути, и на уровне верхних шейных сегментов и средней части грудного белого — больше всего. Но в области как шейного, так и поясничного утолщений серое вещество преобладает.

Как видите, спинной мозг имеет очень сложное строение. Связь нервных пучков и волокон уязвима, и серьезная травма или болезнь способны нарушить это строение и привести к нарушению проводящих путей, из-за чего ниже точки «обрыва» проводимости может быть полный паралич и потеря чувствительности. Поэтому при малейших опасных признаках спинной мозг надо обследовать и вовремя лечить.

Пункция спинного мозга

Для диагностики инфекционных болезней (энцефалита, менингита и др. болезней) используется пункция спинного мозга (люмбальная пункция) — ведение иглы в спинномозговой канал. Она проводится таким образом:
В субарахноидальное пространство спинного мозга на уровне ниже второго поясничного позвонка вводится игла и осуществляется забор спинномозговой жидкости (ликвора ).
Это процедура безопасна, так как ниже второго позвонка у взрослого человека спинной мозг отсутствует, а следовательно, нет угрозы его повреждения.

Однако она требует особой тщательности, чтобы не занести под оболочку спинного мозга инфекцию или эпителиальные клетки.

Пункция спинного мозга проводится не только для диагностики, но и для лечения, в таких случаях:

  • введение химиотерапевтических лекарств или антибиотиков под оболочку мозга
  • для эпидуральной анестезии при операциях
  • для лечения гидроцефалии и уменьшения внутричерепного давления (удаление избытка ликвора)

Пункция спинного мозга имеет такие противопоказания:

  • стеноз спинного канала
  • смещение (дислокация) мозга
  • обезвоживание (дегидратация)

Заботьтесь об этом важном органе, занимайтесь элементарной профилактикой:

  1. Принимайте антивирусные средства во время эпидемии вирусного менингита
  2. Старайтесь не устраивать пикники в лесопарковой зоне в мае-начале июня (период активности энцефалитного клеща)

Посмотрим на мозг как на биологический банк информации. В нем есть все - как работать нашему сердцу, печени, почкам, легким, какими должны быть наши мышцы, походка, цвет волос, тембр голоса и т. д. Контроль за всеми процессами формирования и функционирования нашего тела мозг осуществляет по системе, очень схожей с системой телефонной связи, - по нервной системе.

Нервная система наиболее уязвима, и природа защитила ее. Центральная ее часть - мозг и спинной мозг - укрыта костной «броней» - черепом и позвоночником - и называется ЦНС (центральной нервной системой).

Познакомимся с кратким описанием нервной системы по работам современной медицины и затем рассмотрим инженерную картину этой части нашего организма.

Итак, современная медицина считает, что нервная система играет важную роль в восприятии человеком внешней среды органами чувств, в развитии организма, речи, памяти. Центр нервной системы - головной и спинной мозг. Структурные элементы мозга - миллионы связанных между собой клеток. Все вместе они образуют генератор электрических импульсов для контроля за всеми процессами жизнеобеспечения. Их функции очень схожи с функциями электронных машин и проводов в сложном электромеханизме. Они принимают импульсы, обрабатывают, передают их, возбуждая к работе тот или иной участок нашего тела.

Головной и спинной мозг - главные процессоры нашего тела. Они собирают импульсы от органов чувств и рецепторов по проводам-нервам, интегрируют, синтезируют, анализируют и затем посылают команды, вызывающие соответствующие реакции в мышцах, железах, системах, органах...

Центральная нервная система соединяется с частями тела проводами периферической нервной системы.

Связь спинномозговых проводов с периферическими проходит через нервные узелки - ганглии. Каждый нерв на выходе из позвонка имеет два корешка - двигательный и чувствительный. Функции у них очень разные. Сразу на входе в ганглию они соединяются в один нерв, но каждый работает но своей программе. Как два провода в электрическом телефонном кабеле.

Центральная нервная система - мозг и спинной мозг - несет главную программу и интеллектуальную направленную нагрузку. Поэтому она хорошо, обильно кровоснабжается, получая кислород и питательные вещества.

ЦНС защищена двумя видами покрытия. Первое покрытие костное: головной мозг находится в черепе, спинной - в позвоночнике. Второе покрытие - три мозговые оболочки из волокнистой ткани, укрывающие головной и спинной мозг. Костное покрытие и три оболочки - это бронирующее покрытие над центральной нервной системой связи. Внутри ЦНС содержит спинномозговую жидкость. Она оказывает амортизирующее действие и защищает жизненно важные ткани мозга.

Поверхность полушарий головного мозга называется корой. Она образована равномерным слоем серого вещества толщиной 3 мм. Слой этот представляется как бы сложенным в складки, благодаря чему поверхность полушарий имеет сложный рисунок. Если выпрямить слой коры головного мозга, то он займет площадь в 30 раз большую, чем в свернутом виде. Среди всех этих складок находятся определенные глубокие борозды, которые делят кору на доли с определенными функциями.

Работая со слушателями, я часто спрашиваю: «За что Вы цените человека?» - и получаю ответ: «За интеллект».

Он проявляется в человеке по-разному: в совершенстве его физического тела, красивых формах его мышечного корсета, гладкой коже, ясном взгляде, передающем внутреннюю наполненность. Да, именно за интеллект мы ценим человека. Мозг является хранилищем удивительной генетической программы, одухотворяющей каждого из нас. Он руководит всеми процессами жизнеобеспечения в организме. Как? По телефону. Вдоль спины у каждого из нас проходит «центральный многожильный кабель» связи. Это спинной мозг. Он включает 31 электрический провод, идущий от затылочной кости до копчика. Вычленим один провод и выясним механизм его работы (рис. 1).

Нерв - живой провод. Внутри провод заполнен электрически чувствительной жидкостью - плазмой. Поперек волокон, в зависимости от назначения провода, расположены «живые магниты» - молекулы-медиаторы, быстро реагирующие на изменение напряжения внутри нервного провода. Положение молекул поперек полотна - нерв в покое. Если оставить в стороне все специфические тонкости нейрологии, то принципиально механизм передачи импульса состоит в следующем.

При возбуждении нерва в точке его раздражения возникает напряжение плазмы, отличное от напряжения в начале нерва. Разность потенциалов в трубочке нерва и создаст поворотный момент для молекул-медиаторов, «магнитов» (например, ацетилхолина). Из положения - «поперек нерва» живые магниты поворачиваются и становятся «вдоль нерва», соприкасаясь торцами друг с другом. Так возникает живая электрическая цепь, способная передавать импульсы со скоростью 120 м/с. Поворот «живых магнитов» индуцирует электромагнитное поле вокруг нерва, так называемое, квантовое тело нерва.

Тридцать один провод ЦНС вдоль спины каждого из нас можно назвать центральным многожильным кабелем связи мозг - тело. Учитывая высокую опасность повреждения этой центральной магистрали связи, Природа защитила ЦНС, забронировав ее костным панцирем. Присмотритесь к позвоночнику. Да ведь это - сборное бронирующее устройство из костных звеньев - 32 позвонка, укрывающие 31 электрический провод-нерв.

Позвоночник служит одновременно и опорой для всех органов и систем. На нем крепятся по вертикали все органы нашего тела. Каждые два позвонка соединены посредством хрящевого диска. Именно поэтому позвоночник гибкий, легко позволяет телу поворачиваться вправо-влево, сгибаться-разгибаться. Тело каждого позвонка расширено книзу. В расширенной части позвонка, в его отростке, находится отверстие, через которое выходят корешки нервов спинного мозга. На выходе из позвонков у их отростков по всей длине позвоночника находятся узелки нервов - ганглии. Они выполняют роль усилителей электрических импульсов, исходящих из мозга или наоборот, понижают мощность импульсов, поступающих в мозг извне. Ганглии работают одновременно как трансформаторы и конденсаторы на линиях связи. Вдоль позвоночника две линии ганглий: предвертебральная - непосредственно у позвоночника и паравертебральная - на расстоянии 1,5-2 см.

Принимая 32 позвонка как бронирующее устройство «многожильного телефонного кабеля ЦНС», рассмотрим 5 отделов позвоночника по привычной схеме: шейный, грудной, поясничный, крестцовый, копчиковый. От каждого позвонка вправо и влево отходят нервные провода, несущие импульсы органам и системам. Допустим, что в грудном отделе 4-й и 5-й позвонки несколько «вышли» из своего программного положения (сколиоз в грудном отделе). Выходящие из них проводники- корешки нервов входят в предвертебральные ганглии - узелки нервов, несколько придавленные сколиозно сдвинутыми позвонками. Надо полагать, что трансформирующая и конденсирующая способность ганглий при этом изменилась. Импульс, принятый от спинного мозга, получает энергетическую ошибку. Он поступает в паравертебральную ганглию уже с «ошибкой интеллекта».

Паравертебральная ганглия не сможет исправить этой ошибки и отправит в сердце искаженный импульс. По этой причине органы будут получать контрольные импульсы иннервации с ошибками и 10, и 20, и 30, и 50 лет и т. д. Энергетические нарушения импульсов количественного характера, полученные, например, сердцем, перерастают со временем в качество его работы, в болезни сердца, приобретенные пороки сердца. А начало тому, казалось бы, невинный сколиоз.

После паравертебральных ганглий система нервных проводов разветвляется, образуя сеть из более семидесяти тысяч проводов, работающих принципиально так же в соответствии с законом магнитной индукции, как и провода нервов в ЦНС.

Более семидесяти тысяч проводов периферической нервной системы создают биоэлектромагнитное поле, квантовое тело, индуцированное системой связи нервных проводов внутри человека. Чем больше радиус этого поля, тем больше количество здоровья. Чем меньше радиус квантового тела человека, электромагнитного поля, созданного системой связи нервных проводов, тем меньше количество здоровья человека.

Из описанного примера изменения импульсов иннервации органов, например, сердца сколиозом позвоночника, становится очевидным, как важно иметь здоровый, выставленный, откорректированный по проводимости нервных импульсов позвоночник.

Для проверки качества передачи нервных импульсов от мозга к телу можно воспользоваться и приборным методом из медицины Фолля. Он практикуется в Школе здоровья уже более 2-х лет.

У здорового человека (с выставленным позвоночником и чистой печенью, с достаточным количеством кремния) в шейном, грудном, поясничном, крестцовом, копчиковом отделах токи в корешках нервов на выходе из ганглий должны иметь силу тока - 80 мкрА, в органах и системах 50 мкрА.

Токи, предупреждающие деградацию 50 мкрА и выше. У больных людей названные параметры здоровья, вытекающие из энергетических возможностей человека, искажены.

У наших слушателей в первые два дня заезда до коррекции позвоночника и кремниевой терапии токи по отделам позвоночника обычно искажены и за счет потерь на сопротивление при сколиозах позвоночника имеют на выходе из позвонков силу тока 18-50 мкрА, в органах, где застои и воспаление - 100 и более мкрА, где недостаточное энергообеспечение - 25-40 мкрА. Токи, препятствующие деградации, падают ниже 50 мкрА, при опухолевых заболеваниях могут иметь силу тока ниже 20 мкрА.

После коррекции позвоночника, очистительной техники, кремниевой терапии, дегельминтизации, токи выравниваются и составляют 80-50 мкрА.

По радиусу квантового тела (идя замера используются методы радиоэстезии) легко определить качество «брони» - позвоночника. Особую роль в создании мощного квантового тела имеет шейный отдел. Он состоит из 7 позвонков, испускающих 14 прямых и 23 провода-корешка, дублирующих более низко расположенные нервные провода, нервы. Всего в шейном отделе 37 нервных проводов. Всего из позвонков выходит 87 нервных проводов. 37 - шейных, которые подчеркивают особую роль шейного отдела в поддержании здоровья.

В наших родильных домах акушеры применяют при родовспоможении так называемый поворот головы «на ручку» при выходе плода из лона матери. Именно этот прием вносит хаос в положение 37 нервов шейного отдела, приводит к вывихам 7 шейных позвонков, состоящих из хрящиков, пребывающих в состоянии «зеленой веточки», гибкой и подвижной. Много болезней может повлечь за собой «поворот на ручку». А ведь акушер, не осведомленный об энергетической сути человеческого организма, вообще-то не виноват. Он не изучал предмет «Человек и основы его здоровья». Он так и не понял, зачем его заставили выучить закон электромагнитной индукции в школе и нужно ли применять его к человеку... Думать и делать иначе акушера могли обязать только знания. Сегодня акушер работает среди невежественных людей. За вывихнутую шею младенца ему подарят цветы, шампанское, конфеты.

А между тем каждый день рождаются дети, совершая свой первый большой труд, - прохождение по родовым ходам матери. Каждый из них, попадая в руки акушера, теряет способность передачи энергии, генерированной мозгом, в тело. Обычное явление - на подвывихах шеи, как на реостате, теряется 88-90 % энергии импульсов, которые должны были контролировать тело и обеспечивать его энергию.

Более всего страдает щитовидная жечеза. Ее роль - диспетчер по распределению энергии, полученной от мозга, среди желез внутренней секреции (их более 20 тысяч). Недополучая энергию, щитовидная железа не даст ее железам, создающим иммунитет. А чтобы восполнить недостачу энергии, она станет увеличиваться в размерах. Тем самым станет мешать работе голосового аппарата, дыхательных путей, пищевода. Зоб - приговор на удаление большей части железы. Но этим не решается проблема снабжения гормонами. Каждый ребенок, пройдя через руки неосведомленного акушера, получает более или менее значительный подвывих шеи и программу на букет болезней: внутричерепное давление, энцефалопатию, отек мозга, опухоли и др. Огромная армия специалистов по болезням - медиков получит работу: диагностировать, описать, пролечить, защитить ученую степень и изучать, изучать, изучать... болезни, причина которых - вывихнутая во время родовспоможения шея.

Особый урон здоровью новорожденного наносит первородный страх. Он возникает, когда только что родившегося ребенка забирают у матери и уносят в детскую комнату. Несложившиеся еще биологическая и электрическая системы новорожденного должны жить в теплом квантовом теле матери, а грудь матери для ребенка - источник энергии для раскрутки собственного генератора-мозга, создания своего квантового тела.

Время адаптации в земных условиях жизни - 7 дней. Именно эти семь дней акушеры определили младенцу жить без матери. От испуга, что теряет источник жизни - мать, ребенок получает сильный стресс. Подкорковая часть мозга как бы съеживается, сжимается. Между корой и подкоркой образуется воздушная прослойка - диэлектрик, «зона социального запрета».

На долгие годы кора головного мозга, всего 3-4 % хранилища информации, станет контролировать жизнь, обеспечивая сон, сновидение и бодрствование человека без перерывов. Подкорка подменить ее не сможет, «зона социального запрета» не даст подкорке включиться в работу. «Кора и подкорка, две части мозга, могут работать только заменяя друг друга» (В. Ф. Войно-Яснецкий).

Первородный стресс особенно тяжело сказывается на здоровье мальчиков. От страха за жизнь у младенцев инстинктивно сжимаются паховые вены. Резко уменьшается отток крови от половой системы, в надлобковой области образуется застой (мягкая на ощупь припухлость). Вдох- яички ушли в отек, выдох- выпали в мошонку. При спазмах паховых вен яички надолго задерживаются в отеках. Развитие же их возможно только в специальной ткани - в мошонке. Яички и вся половая система мальчиков, как лаборатория, где Разум Природы превращается в семя человеческое, будет отставать в развитии из-за нарушенного кровообращения. Вялое развитие половой системы, ранняя импотенция, программа на аденому простаты, а иногда просто хирургическое вмешательство уже в детском возрасте. Гениталии мужчин не интересуют большую науку в нашей стране. Воспроизводство себе подобных, более счастливых, чем их отцы, не изучается. О консультациях у андролога - специалиста по болезням мужских половых органов - редко кто слышал.

Если вы поднимите трубку телефона и не услышите в ней гудка, значит связь не работает. А на пути от головы к телу она едва-едва теплится.., У больных ДЦП - она уже «не гудит». Индуцированное квантовое тело человека обычно имеет радиус от 30 до 80 см.

Выставление позвоночника с проверкой проводимости нервных проводов по всему телу обычно приводит к созданию биополя, квантового тела радиусом 22 метра. Выставление шейного отдела позвоночника равносильно присоединению головы к телу. Если мы, люди, имеем дело с простой телефонной связью в системе, то поступаем весьма просто. Убираем дефекты связи на линии и «прозваниваем» ее, соединяясь через АТС с нужным контрольным абонентом. Нечто подобное должен делать оператор по коррекции позвоночника, т. е. выставить связь по ЦНС (позвоночник), рукам, ногам, пояснице, плечевому поясу и проверить качество связи (метод радиоэстезии и методы медицины Фолля). По прибору Фолля можно получить очень красноречивую картину изменения проводимости в отделах позвоночника после коррекции (Н. Семенова «Преображение»).