Общие принципы регуляции деятельности сердца. Компенсаторные механизмы при сердечной недостаточности Понятия

Гипотензия - это существенное снижение артериального давления ниже уровня, обычного для данного пациента. Гипотензия может возникать вследствие нарушений сократимости миокарда, снижения преднагрузки (ЦВД) или постнагрузки (ОПС) левого желудочка.

Сократимость

· все ингаляционные анестетики (галотан, энфлюран, изофлюран) являются кардиодепрессантами. Опиаты проявляют кардиодепрессивный эффект только при использовании в высоких дозах (центральная аналгезия);

· большинство препаратов, используемых для терапии (ИБС, аритмии), являются кардиодепрессантами;

· кроме того, нарушения сократимости могут быть связаны с инфарктом миокарда, гипотермией (температура тела ниже 33°С), гипокальциемией, ацидозом или алкалозом, раздражением блуждающего нерва (н-р, ларинго-кардиальный рефлекс во время интубации трахеи на фоне поверхностной анестезии), токсическим эффектом большой дозы местных анестетиков.

Снижение преднагрузки (неадекватный венозный возврат)

· гиповолемия может быть результатом кровопотери, неадекватного восполнения интраоперационных потерь жидкости, полиурии, надпочечниковой недостаточности;

· сдавление полых вен - в результате заболеваний, манипуляций хирургов или беременности;

· увеличение емкости венозного русла - вследствие симпатической блокады (регионарная анестезия), действия лекарственных препаратов (нитроглицерин, барбитураты, пропофол);

· увеличение давления в правом предсердии - вентиляция большими объемами с использованием положительного давления в конце выдоха (ПДКВ, PEEP) или в результате ряда заболеваний: поражения клапанного аппарата сердца, легочная гипертензия, пневмоторакс, тампонада сердца.

Снижение постнагрузки

· изофлюран, в меньшей степени галотан и энфлюран, уменьшают ОПС;

· опиаты практически не влияют на ОПС, за исключением морфина, который благодаря гистаминогенному эффекту может уменьшать ОПС;

· большие дозы бензодиазепинов, особенно при совместном применении с опиатами, могут вызвать существенное сни­жение ОПС;

· может возникнуть как составная часть симптомокомплекса при аллергическом шоке;

· септический шок часто сопровождается гипотонией;

· может возникнуть в результате симпатической блокады при проведении эпидуральной или спинальной анестезии;

· «турникетный шок» - реваскуляризация участков тела после снятия турникета с магистрального артериального сосуда может привести к вымыванию в кровь биологически активных веществ - вазодилататоров;



· многие лекарственные препараты вызывают снижение ОПС: вазодилататоры (нитропруссид, нитроглицерин); а-адреноблокаторы (дроперидол); препараты, способствующие гиперпродукции гистамина (тубарин); ганглиоблокаторы (пентамин); клофелин; блокаторы кальциевых каналов (нифедипин).

Аритмии

· тахисистолия приводит к гипотонии - вследствие сокращения времени диастолического заполнения желудочков;

· фибрилляция и трепетание предсердий, узловой ритм могут приводить к развитию гипотонии - вследствие отсутствия «предсердной надбавки» - крови, поступающей в желудочки в результате своевременного сокращения предсердий. Предсердная надбавка составляет до 30% конечно-диастолического объема желудочков;

· брадиаритмии - могут приводить к развитию гипотонии, если преднагрузка недостаточна для компенсации за счет увеличения ударного объема.

Лечение должно быть направлено на коррекцию причины, приведшей к развитию гипотонии, и может заключаться в:

Ø уменьшении глубины анестезии;

Ø восполнении объема;

Ø использовании вазопрессоров;

Ø устранении причины пневмоторакса, уменьшении PEEP и т.д.;

Ø лечении аритмии и ишемии миокарда;

Ø использовании атропина (или его производных) для предупреждения вагусных рефлексов или кардиостимулятора при брадикардии или внутрисердечной блокаде.

Гипертензия. Причиной интраоперационной гипертензии может бьпъ:

· выброс катехоламинов - как следствие недостаточной глубины анестезии (особенно при интубации трахеи, стернотомии, лапаротомии и других травматичных этапах операции), гипоксия, гиперкапния, боль при регионарной анестезии, длительное стояние турникетов;

· сопутствующие заболевания - гипертоническая болезнь;

· повышенное внутричерепное давление;

· пережатие аорты;

· гипертензия вследствие внезапной отмены гипотензивных препаратов (клофелина, В-блокаторов и т.д.);



· гипертензия - вследствие одновременного назначения несовместимых лекарственных препаратов, например антидепрессантов иди ингибиторов моноаминооксидазы одновременно с эфедрином;

· гиперволемия.

Лечение заключается в устранении причины, приведшей к развитию гипертензии, и может включать:

Ø коррекцию параметров ИВЛ;

Ø углубление анестезии;

Ø медикаментозную терапию:

Ø назначение В-антагонистов, например пропранолол (обзидан) - 0,5-1 мг в/в;

Ø назначение вазодилататоров, например:

Ø нитроглицерина - в виде в/в инфузии с начальной скоростью 20 мкг/мин и постепенным увеличением дозы до наступления ожидаемого эффекта;

Ø нитропруссида Na с начальной скоростью 20 мкг/мин и постепенным увеличением дозы до наступления ожидаемого эффекта;

Ø тропафена в дозе 1 мг/мин с постепенным увеличением дозы до наступления ожидаемого эффекта;

Гиперкапния

Неадекватная вентиляция

· Угнетение дыхания в результате действия наркотиков, барбитуратов, бензодиазепинов, парообразующих анестетиков (при спонтанной вентиляции).

· Нарушение нейромышечной проводимости может возникнуть при проведении высокой спинномозговой или эпидуральной анестезии, недостаточной декураризации (при спонтанном дыхании).

· Неправильно выбранные параметры ИВЛ.

· Высокое сопротивление в дыхательных путях вследствие бронхоспазма или уменьшения легочного комплайнса.

· Обструкция верхних дыхательных путей, сердечная недостаточность, гемо-, гидро -, пневмоторакс.

· Рециркуляция СО 2 в контуре вследствие выработки ресурса адсорбера, поломки клапанов вдоха или выдоха, недостаточной подачи «свежей» газонаркотической смеси.

· Патология ЦНС (опухоль, ишемия, отек) может привести к неэффективной вентиляции.

Увеличение образования СО 2 происходит при поступлении углекислого газа извне (всасывание из брюшной полости при лапароскопических операциях), проведении полного парентерального питания, повышенном метаболизме (злокачественная гипертермия), серьезных нарушениях кислотно-основного состояния.

Лечение

Ø при возникновении центральной депрессии дыхания после премедикации может понадобиться различная помощь: от попыток «растормошить» больного до проведения вспомогательной вентиляции мешком «Амбу» через маску или же интубационную трубку;

Ø неадекватная вентиляция при проведении ИВЛ - коррекция параметров;

Ø при спонтанной вентиляции - уменьшение концентрации летучих анестетиков или уменьшение доз в/в препаратов;

Ø повышенное сопротивление в дыхательных путях ― бронхиальная астма, инородное тело или раздражение слизистой трахеи интубационной трубкой может привести к развитию бронхоспазма. Необходимо:

· убедиться в правильном положении интубационной трубки;

· удалить инородное тело, кровь, гной, жидкость и провести полную санацию трахеобронхиального дерева;

· произвести ингаляцию симпатомиметиков (изадрин) или ввести преднизолон, эуфиллин и т.д.

Ø при рециркуляция СО 2 в контуре необходимо ― убедиться в нормальной работе наркозного аппарата и дыхательного контура

Ø при увеличении продукции СО 2 необходимо диагностировать и лечить:

· злокачественную гипертермию;

· сепсис - введение антибиотиков и увеличение частоты дыхания;

· снятие турникета с аорты и т.д. - необходимо временное увеличение параметров ИВЛ.

Гипотермия ― частая проблема интраоперационного периода, особенно при длительных и травматичных вмешательствах. Потери тепла происходят с поверхности кожи (до 60% общих потерь), с дыханием (до 20%) (зависят от относительной влажности вдыхаемого газа); в результате соприкосновения с более холодными предметами; в результате конвекции и зависят от работы кондиционера в операционной: чем чаще смена воздуха в операционной, тем больше потери. Некоторые препараты, используемые во время анестезии, увеличивают потери тепла: летучие анестетики (вследствие улучшения периферического кровотока); наркотики и дроперидол (вследствие угнетающего влияния на центр терморегуляции).

Интраоперационная гипотермия опасна, так как:

  • вызывает увеличение общего периферического сопротивления, депрессию миокарда, появление аритмий;
  • вызывает увеличение общелегочного сопротивления и угнетает механизм защитной активной вазоконстрикции;
  • увеличивает вязкость крови, вызывает сдвиг кривой диссоциации оксигемоглобина влево;
  • уменьшает мозговой кровоток, увеличивает сопротивление в артериях мозга, снижает МАК, но в то же время позволяет несколько продлить время интенсивной терапии и реанимации при возникновении тяжелых осложнений;
  • уменьшение органного кровотока в печени и почках приводит к снижению скорости элиминации препаратов, используемых для анестезии и, таким образом, уменьшает их расход;
  • дрожь может увеличить теплообразование на 100-300%. При этом потребление кислорода увеличивается на 400-500%, увеличивается также образование СО 2 ;
  • приводит к олигурии вследствие снижения органного кровотока в почках.

Предупреждение и лечение гипотермии

Ø поддержание температуры комфорта в операционной (не ниже 21°С);

Ø лекарственные растворы и кровь необходимо переливать только после предварительного согревания;

Ø согревание больного (водяной или электрический матрац, обкладывание грелками и т.д.);

Ø использование увлажнителей, лучше - сухих увлажнителей, совмещенных с абактериальным фильтром;

Ø использование полузакрытого контура и низкопоточной техники.

Гипертермия

Состояние, при котором температура увеличивается более чем на 2°С в час. Как исключение может быть следствием слишком усердных попыток согреть больного в операционной. Гипертермия и сопровождающее ее увеличение уровня метаболизма, в свою очередь, приводят к увеличению потребления кислорода, работы миокарда, метаболическому ацидозу и компенсаторной гипервентиляции. Наблюдаемая вазоплегия приводит к относительной гиповолемии и снижению венозного возврата крови. При температуре более 42°С может наступить повреждение ЦНС.

Причины:

· злокачественная гипертермия;

· повышенный уровень метаболизма - характерен для сепсиса, инфекционного заболевания, тиреотоксикоза, феохромоцитомы и может быть следствием реакции на растворы для инфузии;

· повреждение центра терморегуляции, находящегося в гипоталамусе, при отеке, травме, опухоли, абсцессе мозга;

· гипертермический синдром вследствие блокады центра терморегуляции нейролептиками (дроперидол) встречается крайне редко;

· терапия симпатомиметиками.

Злокачественная гипертермия (ЗГ)

Злокачественная гипертермия представляет собой идиосинкразию, которая возникает с частотой 1 на 15000 анестезий у детей и 1 на 50000 анестезий у взрослых, смертность около 10%. Наследование ― аутосомно-доминантное с различной пенетрантностью, так что 50% детей ЗГ-подозрительных родителей имеют потенциальный риск.

Злокачественная гипертермия ― гиперметаболический синдром, возникающий из-за нарушения повторного захвата саркоплазматическим ретикулумом ионов кальция, необходимого для окончания мышечного сокращения. Патогенез до конца не выяснен.

Лекарства, запускающие ЗГ: летучие (галогенсодержащие) анестетики, сукцинилхолин. Спорно (недостаточно данных) в отношении: d-Тубокурарин, кетамин (эффект на кровообращение имитирует ЗГ).

Диагностические тесты ЗГ : Хотя предложено много тестов, тест галотан-коффеиновой контрактуры остается стандартном. Биоптат скелетной мышцы (обычно m.vastus lateralis) помещается в раствор, содержащий 1-3% галотана и кофеина, или же только одного из препаратов.

Клиника. Ригидность m.masseter может возникать после назначения СХ, особенно у детей, подлежащих операции по коррекции косоглазия. Этот эффект рассматривается как премониторинг ЗГ. Манифестация ЗГ:

· гиперкарбия (отражает гиперметаболизм и ответственна за многие симптомы стимуляции симпатической неравной с/с).

· тахикардия.

· тахипноэ.

· подъем температуры (на 1-2° каждые 5 мин)

· гипертензия.

· аритмия сердца.

· ацидоз.

· гипоксемия.

· гиперкалиемия.

· ригидность скелетных мышц.

· миоглобинурия

Даже при удачном лечении есть риск миоглобинурической почечной недостаточности и ДВС-синдрома. Креатинфосфокиназа может превышать 20000 ЕД в первые 12-24 часа. Повторное ухудшение симптомов может возникать в первые 24-36 часов.

Лечение

Ø Немедленное прекращение подачи анестетиков, операция должна быть закончена в максимально короткий срок. Необходима смена наркозного аппарата.

Ø Введение дантролена в начальной дозе 2,5 мг/кг в/в и до 10 мг/кг всего. Дантролен - единственный известный препарат, замедляющий высвобождение кальция из саркоплазматического ретикулума. Каждая ампула дантролена содержит 20 мг дантролена и 3 г маннитола, которые должны быть разведены в 60 мл воды для инъекций.

Ø Симптоматическая терапия, борьба с гипертермией, ацидозом, аритмией, олигурией и т.д.

Парасимпатические центры сердечной деятельности находятся в продолговатом мозге – это дорсальные ядра. От них начинаются блуждающие нервы, идущие к миокарду и к проводящей системе.

Симпатические центры расположенных в боковых рогах серого вещества 5-ти верхних грудных сегментов спинного мозга. Симпатические нервы начинающиеся от них идут к сердцу.

При возбуждении ПНС в окончаниях блуждающих нервов выделяется АХ, при взаимодействии его с М-ХР уменьшает возбудимость сердечной мышцы, замедляется проведение возбуждения, происходит замедление сердечных сокращений и уменьшается их амплитуда.

Влияние СНС связано с воздействием медиатора норадреналина на β-АР. При этом увеличивается частота сердечных сокращений, их сила, усиливается возбудимость сердца и улучшается проведение возбуждения.

Рефлекторные механизмы регуляции сердечной деятельности.

Рефлекторные изменения работы сердца возникают при раздражении разных рецепторов, расположенных в разных местах: сосудах, внутренних органах, в самом сердце. В связи с этим различают:

Сосудисто-кардиальные рефлексы

Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти участки называются – сосудистые рефлексогенные зоны (СРЗ). Они есть в дуге аорты – аортальная зона и в области разветвления сонной артерии – синокаротидная зона. Рецепторы, обнаруженные здесь, реагируют на изменение давления крови в сосудах – барорецепторы и изменение химического состава крови – хеморецепторы. От этих рецепторов начинаются афферентные нервы – аортальный и синокаротидный, которые проводят возбуждение к продолговатому мозгу.

При увеличении давления крови рецепторы СРЗ возбуждаются, в результате увеличивается поток нервных импульсов к продолговатому мозгу и увеличивает тонус ядер блуждающих нервов, по блуждающим нервам возбуждение идет к сердцу и его сокращения ослабляются, их ритм замедляется, а значит, восстанавливается исходный уровень АД.

Если давление крови в сосудах уменьшается, поток афферентных импульсов от рецепторов в продолговатый мозг уменьшается, значит уменьшается и тонус ядер блуждающего нерва, вследствие чего усиливается влияние симпатической нервной системы на сердце: частота сердечных сокращений, их сила увеличиваются и АД возвращается к норме.

Кардио-кардиальные рефлексы

Сердечная деятельность меняется и при возбуждении рецепторов имеющихся в самом сердце. В правом предсердии есть механорецепторы, реагирующие на растяжение. При усилении притока крови к сердцу эти рецепторы возбуждаются, по чувствительным волокнам блуждающего нерва нервные импульсы идут в продолговатый мозг, активность центров блуждающих нервов уменьшается и увеличивается тонус симпатической нервной системы. В связи с этим увеличивается частота сердечных сокращений и сердце выбрасывает излишки крови в артериальную систему. Этот рефлекс назван рефлексом Бейнбриджа, или разгрузочным рефлексом.

Висцеро-кардиальные рефлексы.

Классическим примером висцеро-кардиального рефлекса может быть рефлекс Гольца: при раздражении механорецепторов брюшины или органов брюшной полости нервные импульсы идут по чревному нерву в спинной мозг, далее к центрам блуждающего нерва и по нему к сердцу, в результате уменьшается частота сердечных сокращений.

К такому же эффекту приводит надавливание на глазные яблоки (рефлекс Ашнера).

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст. возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша — это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина — это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур — это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем — масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия — стадия завершившейся гипертрофии — характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца — это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 — миокард здорового взрослого; 2 — гипертрофированный миокард взрослого (масса 540 г); 3 — гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой — в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие — так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева — это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии — развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное — симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Компенсаторные механизмы

Информация, релевантная «Компенсаторные механизмы»

При любой эндокринной патологии, как и при всех заболеваниях, наряду с нарушением функций развиваются компенсаторно-приспособительные механизмы. Например, при гемикастрации – компенсаторная гипертрофия яичника или семенника; гипертрофия и гиперплазия секреторных клеток коркового вещества надпочечника при удалении части паренхимы железы; при гиперсекреции глюкокортикоидов – уменьшение их

Размер почки уменьшен за счет гибели нефронов. Компенсаторные механизмы велики: при 50% гибели нефронов ХПН еще не развивается. Запустевают клубочки, гибнут канальцы, идут фибропластические процессы: гиалиноз, склероз оставшихся клубочков. Относительно сохранившихся клубочков существуют 2 точки зрения: 1) Они берут на себя функцию тех нефронов, которые погибли (1:4) — клетки увеличиваются в

Физиологическая реакция организма в ответ на изменения во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная ТАБЛИЦА 30-1. Диагностика нарушений кислотно-основного состояния Нарушение

Следует выделить три основные группы механизмов выздоровления: 1) срочные (неустойчивые, «аварийные») защитно-компенсаторные реакции, возникающие в первые секунды и минуты после воздействия и представляющие собой главным образом защитные рефлексы, с помощью которых организм освобождается от вредных веществ и удаляет их (рвота; кашель, чиханье и т.д.). К этому типу реакций следует отнести

При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс «оз» отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом, тогда как состояния, которые вызывают увеличение рН,- алкалозом. Если первопричиной нарушений является

Терминальные состояния — это своеобразный патологический симптомокомплекс, проявляющийся тяжелейшими нарушениями функций органов и систем, с которыми организм без помощи извне справиться не может. Другими словами это состояния пограничные между жизнью и смертью. К ним относятся все стадии умирания и ранние этапы постреанимационного периода. Умирание может быть следствием развития любого тяжелого

Недостаточность внешнего дыхания (НВД) – это патологическое состояние, развивающееся вследствие нарушения внешнего дыхания, при котором не обеспечивается нормальный газовый состав артериальной крови или он достигается в результате включения компенсаторных механизмов, приводящих к ограничению резервных возможностей организма. Формы недостаточности внешнего дыхания

Повышение рН артериальной крови угнетает дыхательный центр. Снижение альвеолярной вентиляции приводит к увеличению PaCO2 и сдвигу рН артериальной крови в сторону нормы. Компенсаторная реакция дыхания при метаболическом алкалозе менее предсказуема, чем при метаболическом ацидозе. Гипоксемия, развивающаяся в результате прогрессирующей гиповентиляции, в конечном счете активирует чувствительные к

Первый ЭКГ признак Поскольку экстрасистола - это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому пред экстрасистолический интервал, т.е. интервал R(синусовый) - R(экстрасистолический) будет меньше интервала R(синусовый) - R(синусовый). Рис. 68. Предсердная экстрасистола. В отведении III

Активный экстрасистолический очаг находится в желудочках. Первый ЭКГ признак Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага. Краткая запись - интервал R(с)-R(э)

Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды — дигоксин

Компенсаторные механизмы . активируемые во время ЗСН, проявляются в виде положительной инотропии. Повышение силы сокращения мышц ([+dP/dt]max) носит название положительной инотропии. Она возникает как следствие усиленной симпатической стимуляции сердца и активации (З1-адренорецепторов желудочков и ведет к повышению эффективности систолического выброса. Но благоприятный эффект этого компенсаторного механизма не может поддерживаться долго. Развивается недостаточность в результате перегрузки желудочков, возникающей вследствие повышения давления в желудочках при их наполнении, систолического стресса стенки и повышенной потребности миокарда в энергии.

Лечение застойной сердечной недостаточности . Существует две фазы ЗСН: острая и хроническая. Лекарственная терапия должна не только облегчить симптомы заболевания, но и снизить смертность. Эффект лекарственной терапии наиболее благоприятен в тех случаях, когда ЗСН возникла вследствие кардиомиопатии или артериальной гипертензии. Цель лечения состоит в том, чтобы:

Уменьшить застой (отеки);

Улучшить систолическую и диастолическую функции сердца. Для достижения этой цели используют различные лекарственные средства.

Сердечные гликозиды используют для лечения сердечной недостаточности более 200 лет. Дигоксин - прототипичный сердечный гликозид, экстрагируемый из листьев пурпурной и белой наперстянки (Digitalis purpurea и D. lanata соответственно). Дигоксин - наиболее распространенный препарат из группы сердечных гликозидов, применяемых в США.

Все сердечные гликозиды обладают сходной химической структурой. Дигоксин, дигиталис и оубаин содержат агликоновое стероидное ядро, имеющее значение для фармакологической активности, а также ненасыщенное, связанное с С17 лактоновое кольцо, обладающее кардиотоническим действием, и связанный с С3 углеводный компонент (сахар), влияющий на активность и фармакокинетические свойства гликозидов.

Сердечные гликозиды ингибируют мембраносвязанную Nа+/К+-АТФазу, улучшая симптоматику ЗСН. Эффекты сердечных гликозидов на молекулярном уровне обусловлены ингибированием мембраносвя-занной Nа+/К+-АТФазы. Этот фермент участвует в создании мембранного потенциала покоя большинства возбудимых клеток посредством выведения трех ионов Na+ из клетки в обмен на поступление двух ионов К+ в клетку против градиента концентрации, тем самым создавая высокую концентрацию К+ (140 мМ) и низкую концентрацию Na+ (25 мМ). Энергию для этого насосного эффекта дает гидролиз АТФ. Ингибирование насоса приводит к повышению внутриклеточной цитоплазматической концентрации Na+.

Повышение концентрации Na+ ведет к ингибированию мембраносвязанного Ка+/Са2+-обменника и как следствие - к повышению концентрации цито-плазматического Са2+. Обменник представляет собой АТФ-независимый антипортер, вызывающий в обычных условиях вытеснение Са2+ из клеток. Повышение концентрации Na+ в цитоплазме пассивно снижает обменную функцию, и из клетки вытесняется меньше Са2+. Затем Са2+ в повышенной концентрации активно нагнетается в саркоплазматический ретикулум (СР) и становится доступным для высвобождения в течение последующей клеточной деполяризации, тем самым усиливая связь возбуждение-сокращение. Результатом является более высокая сократимость, известная как положительная инотропия.

При сердечной недостаточности положительное инотропное действие сердечных гликозидов изменяет кривую Франка-Старлинга желудочковой функции.

Несмотря на широкое применение дигиталиса, отсутствуют убедительные доказательства того, что он благоприятно влияет на отдаленный прогноз при ЗСН. У многих пациентов дигиталис улучшает симптоматику, однако не снижает смертность от ЗСН.

8.10. СОПРЯЖЕННЫЕ РЕФЛЕКСЫ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Это понятие ввел в физиологию В. Н. Черниговский. Сопряжен-ные (межсистемные) рефлексы - рефлекторные влияния на сер-дечно-сосудистую систему с рефлексогенных зон других органов или с сердечно-сосудистой системы на другие системы организма. Они не принимают прямого участия в регуляции системного АД. Примером сопряженных рефлексов могут служить следующие реф-лексы.

Рефлекс Данини - Ашнера (глазо-сердечный рефлекс) - это снижение частоты сердечных сокращений (ЧСС), возникающее при надавливании на боковую поверхность глаз.

Рефлекс Гольца - уменьшение ЧСС или даже полная останов-ка сердца при раздражении механорецепторов органов брюшной полости или брюшины, что учитывается при хирургических вме-шательствах в брюшной полости. В опыте Гольца поколачивание по желудку и кишечнику лягушки ведет к остановке сердца.

Рефлекс Тома - Ру - брадикардия при сильном давлении или ударе в эпигастральную область. Удар «под ложечку» (ниже мече-видного отростка грудины - область солнечного сплетения) у че-ловека может привести к остановке сердца, кратковременной по-тере сознания и даже к смерти. У боксеров такой удар является запрещенным. Рефлексы Гольца и Тома - Ру осуществляются с по-мощью блуждающего нерва и, по-видимому, имеют общую рефлек-согенную зону.

Рефлекс с механо- и терморецепторов кожи при их раз-дражении заключается в торможении или стимуляции сердечной деятельности. Степень их выраженности может быть весьма силь-ной. Известны, например, случаи летального исхода вследствие остановки сердца при нырянии в холодную воду (резкое охлажде-ние кожи живота).

Рефлекс с проприорецепторов возникает при физической нагрузке и выражается в увеличении ЧСС вследствие уменьшения: тонуса блуждающих нервов. Этот рефлекс является приспособи-[ тельным - обеспечивает улучшение снабжения работающих мышц кислородом и питательными веществами, удаление метаболитов. Условные рефлексы на изменение сердечной деятельности также относят к сопряженным рефлексам, например, предстарто-вое состояние, которое сопровождается ярковыраженными эмоци-ями и выбросом адреналина в кровь.

8.11. ЛИМФАТИЧЕСКАЯ СИСТЕМА

Лимфатическая система - это совокупность лимфатических сосудов и расположенных по их ходу лимфатических узлов, обес-печивающая всасывание межклеточной жидкости, веществ и воз-врат их в кровяное русло. Лимфатическая система поддерживает баланс различных веществ и жидкости в организме.

Лимфатические сосуды начинаются капиллярами, представ-ляющими собой обширную разветвленную сеть мелких тонкостен-ных сосудов, неравномерно представленную в разных участках тела " (например, в мозге их нет, в мышцах мало). Начинается лимфати-ческая система с тончайших, закрытых с одного конца терминаль-ных лимфатических капилляров. Стенки их обладают высокой про-ницаемостью, вместе с тканевой жидкостью внутрь легко проходят молекулы белка и другие крупные частицы. В структурно-функци-ональном отношении лимфатические сосуды аналогичны венам и также снабжены клапанами, препятствующими обратному току лимфы. Участки между двумя клапанами (клапанные сегменты), в последующем названные лимфангионами (АНзНп), обеспечивают насосную функцию лимфатической системы (Р. С. Орлов). Лимфа-тические сосуды впадают в венозную систему. В частности, груд-ной проток впадает в угол, образованный левыми (наружной ярем-ной и подключичной) венами, в месте их слияния.

Лимфатические узлы, располагающиеся на пути лимфатиче-ских сосудов, благодаря наличию в них гладкомышечных элемен-тов способны сокращаться. Содержащиеся в лимфе бактерии фаго-

цитируются клетками лимфатических узлов. При этом в лимфати-ческих узлах развивается воспалительный процесс, они увеличи-ваются в размерах, становятся болезненными. Функции лимфатической системы.

    Дренажная функция заключается в удалении из интерсти-ция продуктов обмена и избытка воды, профильтровавшейся из кровеносных капилляров и не полностью реабсорбировавшейся. В случае прекращения лимфотока развиваются отек тканей и дис-трофические их нарушения.

    Защитная функция заключается в обеспечении транспорта антигенов и антител, в переносе из лимфоидных органов плазмати-ческих клеток для обеспечения гуморального иммунитета - в фор-мировании иммунного ответа на антиген, в кооперации различных иммунокомпетентных клеток (лимфоцитов, макрофагов), в реали-зации клеточного иммунитета.

    Возврат белков и электролитов в кровь (за сутки возвра-щается в кровь около 40 г белка).

    Транспорт из пищеварительной системы в кровь продук-тов гидролиза пищевых веществ (в основном липидов).

    Кроветворная функция заключается в том, что в лимфоид-ной ткани продолжаются начинающиеся в костном мозге процессы дифференцировки и образования новых лимфоцитов.

Лимфа представляет собой прозрачную жидкость слегка жел-товатого цвета, солоноватого вкуса, с приторным запахом. Она состо-ит из лимфоплазмы и форменных элементов, в основном лимфоцитов. По химическому составу лимфоплазма близка к плазме крови.

Лимфа образуется в результате фильтрации жидкости из ка-пилляров в интерстиций, отсюда она диффундирует в лимфатиче-ские капилляры. Белки, хиломикроны и другие частицы попадают в полость лимфатического капилляра с помощью пиноцитоза. Ско-рость фильтрации во всех кровеносных капиллярах (кроме почеч-ных клубочков) составляет 14 мл/мин, что составляет 20 л в сут-ки; скорость обратного всасывания - около 12,5 мл/мин, т. е. 18 л в сутки. Следовательно, в лимфатические капилляры попадает око-ло 2 л в жидкости в сутки. В лимфатических сосудах взрослого че-ловека весом 70 кг натощак содержится 2-3 л лимфы.

Непосредственной движущей силой лимфы, как и крови, в любом участке сосудистого русла является градиент гидроста-тического давления. Клапанный аппарат лимфатических сосудов препятствует обратному току лимфы. В работающих органах лим-фоток возрастает. Градиент гидростатического давления в лимфа-тической системе создается несколькими факторами. 1. Основным из них является сократительная активность лимфатических

сосудов и узлов. В лимфангионе имеются мышцесодержащая часть и участок со слабым развитием мышечных элементов (область при-крепления клапанов). Для функций лимфатических сосудов харак-терны фазные ритмические сокращения (10-20 в мин), медленные волны (2-5 в мин) и тонус. 2. Присасывающее действие грудной клетки (как и для движения крови по венам). 3. Сокращение ске- летных мышц, пульсация близлежащих крупных артериальных со-судов, повышение внутрибрюшного давления.

Регуляция сократительной активности лимфангионов осуществляется с помощью нервного, гуморального и миогенного механизмов. Миогенная регуляция лимфангионов осуществляет-ся благодаря автоматии гладких мышц, при этом увеличение их растяжения приводит к возрастанию силы сокращения и оказыва-ет активирующее влияние на соседние лимфангионы. Нервная регуляция сократительной деятельности лимфангионов, по дан-ным Р. С. Орлова и сотр. (1982), осуществляется с помощью интра-мурального нервного аппарата и симпатической нервной системы, которая активирует а-адренорецепторы, что ведет к учащению фаз-ных сокращений. Катехоламины вызывают разнонаправленные реакции лимфатических микрососудов. Эффект зависит от дозы пре-парата, по-видимому, по той же причине, что и в кровеносных сосу-дах. Холинэргические влияния неоднозначны, но, как правило, низ-кие концентрации ацетилхолина уменьшают частоту спонтанных фазных сокращений пейсмекеров лимфангионов. Гормональная регуляция сокращений лимфангионов изучена недостаточно. Из-вестно, например, что вазопрессин усиливает лимфоток, оксито-цин тормозит его.

Глава 9 ПИЩЕВАРИТЕЛЬНАЯ СИСТЕМА

9.1. ПОНЯТИЯ. ХАРАКТЕРИСТИКА ГЛАДКОЙ МЫШЦЫ

Большая часть гладких мышц организма находится в составе органов пищеварительной системы.

Пищеварительная система представляет собой извитую трубку, начинающуюся ротовым и заканчивающуюся анальным отверстием, с примыкающими к ней слюнными железами, печенью и поджелудочной железой. Выделяют также понятие пищевари-тельный тракт, в который входят ротовой отдел, глотка, пище-

вод, желудок, тонкая и толстая кишки (кишечник). Желудок и ки-шечник составляют желудочно-кишечный тракт (ЖКТ).

Стенка пищеварительного тракта имеет однотипное строение и включает в себя слизистую, подслизистую, мышечную и серозную оболочки. Пищеварительный тракт сообщается с внешним миром. Однако стенка пищеварительного тракта надежно защищает внут-реннюю среду организма от попадания микробов и инородных час-тиц из внешней среды.

Пищеварение - это совокупность процессов, обеспечивающих расщепление белков, жиров и углеводов пищи в пищеварительном тракте до сравнительно простых соединений - питательных ве-ществ. Питательные вещества - это вода, минеральные соли, витамины и продукты расщепления белков, жиров и углеводов пищи в пищеварительном тракте на соединения, лишенные видоспеци-фичности, но сохраняющие энергетическую и пластическую цен-ность, способные всасываться в кровь и лимфу и ассимилировать-ся организмом (А. А. Кромин). Источником питательных веществ является пища. Значение пищеварительной системы - обеспе-чение клеток и тканей организма исходными пластическим и энер-гетическим материалами, используемыми в процессе метаболизма.

Чтобы питательные вещества попали в организм, пища должна быть подвергнута физической обработке (размельчение, перемеши-вание, набухание и растворение), химической обработке - гидро-лизу. Гидролиз - это процесс расщепления полимеров (деполиме-ризация) - белков, жиров и углеводов под влиянием гидролитических ферментов пищеварительных желез до мономеров. Железы пищева-рительного тракта продуцируют три группы гидролитических фер-ментов: протеазы (расщепляют белки до аминокислот), липазы (расщепляют жиры и липиды до моноглицеридов и жирных-кислот) и карбогидразы (расщепляют углеводы до моносахаридов). Имен-но эти продукты расщепления пищи (переваривания) и являются питательными веществами живого организма.

Гладкая мышца. Стенками многих внутренних органов явля-ются гладкие (неисчерченные) мышцы (желудок, кишечник, пище-вод, желчный пузырь и др.). Их активность не управляется про-извольно. Поэтому гладкие мышцы и мышцу сердца называют непроизвольной. Медленные, часто ритмические сокращения глад-комышечных стенок внутренних органов обеспечивают перемеще-ние содержимого этих органов. Тоническое сокращение стенок со-судов поддерживает оптимальный уровень кровяного давления и кровоснабжение органов и тканей, отток лимфы от скелетных мышц и внутренних органов. Гладкие мышцы построены из веретенооб-разных одноядерных мышечных клеток, толщина которых состав-

ляет 2-10 мкм, длина - от 50 до 400 мкм. Волокна связаны между собой нексусами, которые хорошо проводят возбуждение, поэто-му гладкая мышца функционирует как синцитий - функцио-нальное образование, в котором возбуждение способно непосред-ственно передаваться с одной клетки на другую. Этим свойством гладкая мышца отличается от скелетной и сходна с сердечной. Од-нако для возникновения ПД необходимо возбуждение определен-ного числа мышечных волокон, возбуждения одного мышечного во-локна недостаточно. Таким образом, функциональной единицей гладкой мышцы является не отдельная клетка, как в скелетной мышце, а мышечный пучок.

Многие гладкомышечные волокна обладают автоматией. Потен-циал покоя в гладкомышечных клетках составляет 30-70 мВ. Дли-тельность пикоподобных ПД составляет 5-80 мс, ПД с плато, ха-рактерных для гладких мышц матки, уретры и некоторых сосудов, длятся от 30 до 500 мс. Главную роль в генерации ПД гладких мышц играет Са 2+ .

Процесс сокращения гладкомышечных волокон соверша-ется по тому же механизму скольжения нитей актина и миозина, что и в скелетных мышцах. Однако у гладкомышечных клеток сла- бо выражен саркоплазматический ретикулум. В этой связи триггером для мышечного сокращения служит поступление ионов Са 2+ в клетку из межклеточной среды в процессе генерации ПД. Ионы Са 2+ воздействуют на белок кальмодулин, который активи-рует киназы легких цепей миозина. Это обеспечивает перенос фос-фатной группы на миозин и сразу вызывает срабатывание попереч-ных мостиков, т.е. сокращение. Тропонин-тропомиозиновая система в гладкой мышце, по-видимому, отсутствует. Сила сокра- щений гладких мышц меньше силы сокращений скелетных мышц. Скорость сокращения гладких мышц невелика - на 1-2 поряд-ка ниже, чем у скелетных мышц.

Характерными свойствами гладкой мышцы являются автома-шин и пластичность (гладкая мышца способна быть расслаблен-ной в укороченном и в растянутом состояниях). Благодаря плас-тичности гладкой мышцы давление в полых внутренних органах может мало изменяться при значительном их наполнении.

9.2. ФУНКЦИИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ. СОСТОЯНИЕ ГОЛОДА И НАСЫЩЕНИЯ

Пищеварительная система выполняет пищеварительные и не-пищеварительные функции.

Пищеварительные функции.

    Моторная (двигательная) функция - это сократительная деятельность пищеварительного тракта, обеспечивающая измель-чение пищи, ее перемешивание с пищеварительными секретами и перемещение пищевого содержимого в дистальном направлении.

    Секреция - синтез секреторной клеткой специфического продукта - секрета и выделение его из клетки. Секрет пищевари-тельных желез обеспечивает переваривание пищи.

    Всасывание - транспорт питательных веществ во внутрен-нюю среду организма.

Непищеварительные функции пищеварительной сис-темы.

    Защитная функция осуществляется с помощью нескольких механизмов. ]. Слизистые оболочки пищеварительного тракта.пре-пятствуют проникновению во внутреннюю среду организма непере-варенной пищи, инородных веществ и бактерий (барьерная функция). 2. Пищеварительные соки обладают бактерицидным и бактериостати-ческим действием. 3. Местная иммунная системе пищеварительного тракта (миндалины глоточного кольца, лимфатические фолликулы в стенке кишки, пейеровы бляшки, плазматические клетки слизистой оболочки желудка и кишечника, червеобразный отросток) блоки-рует действие патогенных микроорганизмов. 4. Пищеварительный тракт вырабатывает естественные антитела при контакте с обли-гатной кишечной микрофлорой.

    Метаболическая функция заключается в кругообороте эндогенных веществ между кровью и пищеварительным трактом, обеспечивающим возможность их повторного использования в про-цессах обмена веществ или пищеварительной деятельности. В ус-ловиях физиологического голода эндогенные белки периодически выделяются из крови в полость желудочно-кишечного тракта в со-ставе пищеварительных соков, где они подвергаются гидролизу, а образующиеся при этом аминокислоты всасываются в кровь и вклю-чаются в метаболизм. Значительное количество воды и растворен-ных в ней неорганических солей циркулирует между кровью и пи-щеварительным трактом.

    Экскреторная (выделительная) функция заключается в выведении из крови с секретами желез в полость пищеварительно-го тракта продуктов обмена (например, мочевины, аммиака) и раз-личных чужеродных веществ, поступивших в кровоток (соли тя-желых металлов, лекарственные вещества, изотопы, красители), вводимых в организм с диагностическими целями.

    Эндокринная функция заключается в секреции гормонов пищеварительной системы, основными из которых являются: ин-

сулин, глюкагон, гастрин, серотонин, холецистокинин, секретин, вазоактивный интестинальный пептид, мотилин.

Состояние голода. Ощущение голода возникает после эвакуа-ции химуса из желудка и двенадцатиперстной кишки, мышечная стен-ка которых приобретает повышенный тонус и усиливается импуль-сация от механорецепторов пустых органов {сенсорная стадия состояния голода). При снижении питательных веществ в крови на-чинается метаболическая стадия состояния голода. Недостаток питательных веществ в крови («голодная» кровь) воспринимается хеморецепторами сосудистого русла и непосредственно гипоталаму-сом, избирательно чувствительными к недостатку в крови опреде-ленных питательных веществ. При этом формируется пищевая мо- тивация (вызванное доминирующей пищевой потребностью побуждение организма для пищевого поведения - поиск, добывание и поедание пищи). Раздражение электрическим током гипоталами-ческого центра голода у животных вызывает гиперфагию - непре-рывное поедание пищи, а его разрушение - афагию (отказ от пищи). Центр голода латерального гипоталамуса находится в реципрокных (взаимотормозящих) отношениях с центром насыщения вентроме-диального гипоталамуса. При стимуляции этого центра наблюдает-ся афагия, а при его разрушении - гиперфагия.

Состояние насыщения. После приема достаточного количе-ства пищи для удовлетворения пищевой потребности наступает стадия сенсорного насыщения, которая сопровождается положи-тельной эмоцией. Стадия истинного насыщения наступает зна-чительно позднее - через 1,5-2 ч с момента приема пищи, когда в кровь начинают поступать питательные вещества.

9.3. ПИЩЕВАРЕНИЕ В ПОЛОСТИ РТА. АКТ ГЛОТАНИЯ

В полости рта происходит механическая и химическая обработ-
ка пищи. »

А. Механическая обработка пищи в ротовой полости осуще-ствляется с помощью жевания.

Процесс жевания произвольный. Эфферентные импульсы пере-даются по кортикобульбарному пути к моторному ядру жеватель-ного центра в продолговатом мозге и далее - по центробежным волокнам тройничного, лицевого и подъязычного нервов к жева-тельным мышцам, вызывая их ритмическую сократительную ак-тивность. Процесс жевания в условиях эксперимента может осуществляться непроизвольно (автоматические движения). Децеребрированные животные совершают ритмические жеватель-

ные движения, когда им в рот кладут пищу. Тщательное измельче-ние пищи в процессе жевания до частиц диаметром в несколько миллиметров играет весьма важную роль.

    Оно значительно облегчает последующее переваривание и всасывание.

    Жевание стимулирует слюноотделение, что формирует вкусовые ощущения и переваривание углеводов.

    Жевание оказывает рефлекторное стимулирующее вли-яние на секреторную и моторную деятельность желудочно-кишечного тракта.

    Жевание обеспечивает формирование пищевого комка, пригодного для глотания и переваривания.

Б. Химическая обработка пищи в ротовой полости осуще-ствляется с помощью слюны, которая вырабатывается в околоуш-ных, подчелюстной, подъязычной слюнных железах, а также в же-лезах языка и неба. За сутки выделяется 0,5-2,0 л слюны. Слюна различных желез несколько различается. Смешанная слюна на 99,5% состоит из воды, имеет рН 5,8-7,4. Одну треть сухого остатка составляют минеральные компоненты слюны, две трети -органические вещества: белки, аминокислоты, азотсодержащие со-единения небелковой природы (мочевина, аммиак, креатинин, кре-атин). Вязкость и ослизняющие свойства слюны обусловлены на-личием мукополисахаридов (муцина). Слюна выполняет несколько функций.

    Обеспечивает физическую обработку пищи: 1) смачива-ние пищи и тем самым способствует ее измельчению и гомогени-зации при жевании; 2) растворение веществ, без которого вкусо-вая рецепция невозможна; 3) ослизнение пищи в процессе жевания, что необходимо для формирования пищевого комка и его проглатывания.

    Химическая обработка пищи - переваривание углеводов - осуществляется ферментами слюны: а-амилазой (расщепляет крах-мал и гликоген до мальтозы и глюкозы) и а-глюкозидазой (мальтаза гидролизует мальтозу до моносахаридов). Ввиду кратковременности пребывания пищи в ротовой полости (15-20 с) основное гидролити-ческое действие (карбогидраз слюны) реализуется в желудке.

    Слюна выполняет также защитную функцию. Муроми-даза (лизоцим) слюны обладает бактерицидным действием; проте-иназы, напоминающие по субстратной специфичности трипсин, дезинфицируют содержимое полости рта. Нуклеазы слюны участву-ют в деградации нуклеиновых кислот вирусов.

В. Регуляция секреции слюнных желез осуществляется посредством условных и безусловный рефлексов. Отделение

слюны начинается через несколько секунд после приема пищи. В процессе приема пищи возбуждаются тактильные, температур-ные и вкусовые рецепторы слизистой оболочки рта. Потоки аффе-рентных импульсов поступают по чувствительным волокнам трой-ничного, лицевого, языкоглоточного и блуждающего нервов в бульбарный отдел слюноотделительного центра, который представ-лен верхним и нижним слюноотделительными ядрами. Афферент- ные импульсы поступают также и в вышележащие отделы ЦНС, в том числе и в корковый отдел вкусового анализатора. Возбужде-ние парасимпатических нервов (барабанная струна иннервиру-ет подчелюстную и подъязычную железы, языкоглоточный нерв ин-нервирует околоушную железу) вызывает обильную секрецию жидкой слюны с высокой концентрацией солей и низким содержа-нием муцина. Возбуждение симпатических нервов (прегангли-онарные нейроны, локализуются в области II-V грудных сегмен-тов спинного мозга) вызывает выделение небольшого количества густой слюны с высокой концентрацией ферментов и муцина. В ре-зультате жевания пищевой комок подготавливается к глотанию.

Г. Акт глотания состоит из трех фаз.

В первую (ротовую) фазу глотания пищевой комок с помо-щью языка переводится за передние дужки глоточного кольца, при этом жевание прекращается. Эта фаза произвольная. Гортань с помощью сокращения челюстно-подъязычной мышцы поднмается.

Вторая (глоточная) фаза глотания непроизвольная, возни-кает вследствие раздражения пищевым комком механорецепторов слизистой оболочки корня языка, передних дужек и мягкого неба. При фармакологическом выключении перечисленных рецепторов глотание становится невозможным. Акт глотания нельзя вызвать, если в полости рта нет пищи, воды или слюны. Вторая фаза акта глотания заканчивается поступлением пищевого комка из глотки в пищевод. Длительность первых двух фаз акта глотания около 1 с.

Третья (пищеводная) фаза акта глотания также непроиз-вольная, обеспечивает поступление пищевого комка в желудок. После поступления пищевого комка в начальную часть пищевода в ней возникает первичная в проксимо-дистальном направлении пе-ристальтическая волна, обеспечивающая продвижение пищевого комка по пищеводу. Сокращение циркулярных исчерченных мышц выше пищевого комка и их расслабление ниже пищевого комка со-здает проксимо-дистальный градиент давления. В грудном отделе исчерченная мускулатура пищевода сменяется гладкой, однако перистальтическая волна распространяется по всей длине пищево-да. Длительность прохождения воды по пищеводу составляет 1 с, слизистой массы - 5 с, твердой пищи - 9-10 с.

Д. Регуляция моторной функции пищевода осуществляет-ся в основном блуждающим нервом. Причем исчерченные мыш-цы верхней части пищевода управляются его Отчет

2009. Смирнов В.М., Дубровский В.И. Физиология физического воспитания и спорта : Учебник. -М.: Владос-Пресс, 2002 ... Гигиенические основы физической культуры и спорта Основная: 1. Вайнбаум Я.С. Гигиена физического воспитания и спорта : Учеб. пособ...

Сосудисто-кардиальные рефлексы

Рефлекторные механизмы регуляции сердечной деятельности.

Иннервация сердца.

Парасимпатические центры сердечной деятельности находятся в продолговатом мозге – это дорсальные ядра. От них начинаются блуждающие нервы, идущие к миокарду и к проводящей системе.

Симпатические центры расположенных в боковых рогах серого вещества 5-ти верхних грудных сегментов спинного мозга. Симпатические нервы начинающиеся от них идут к сердцу.

При возбуждении ПНС в окончаниях блуждающих нервов выделяется АХ, при взаимодействии его с М-ХР уменьшает возбудимость сердечной мышцы, замедляется проведение возбуждения, происходит замедление сердечных сокращений и уменьшается их амплитуда.

Влияние СНС связано с воздействием медиатора норадреналина на β-АР. При этом увеличивается частота сердечных сокращений, их сила, усиливается возбудимость сердца и улучшается проведение возбуждения.

Рефлекторные изменения работы сердца возникают при раздражении разных рецепторов, расположенных в разных местах: сосудах, внутренних органах, в самом сердце. В связи с этим различают:

1) сосудисто-кардиальные рефлексы

2) кардио-кардиальные рефлексы

3) висцеро-кардиальные рефлексы

Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти участки называются – сосудистые рефлексогенные зоны (СРЗ). Они есть в дуге аорты – аортальная зона и в области разветвления сонной артерии – синокаротидная зона. Рецепторы, обнаруженные здесь, реагируют на изменение давления крови в сосудах – барорецепторы и изменение химического состава крови – хеморецепторы. От этих рецепторов начинаются афферентные нервы – аортальный и синокаротидный, которые проводят возбуждение к продолговатому мозгу.

При увеличении давления крови рецепторы СРЗ возбуждаются, в результате увеличивается поток нервных импульсов к продолговатому мозгу и увеличивает тонус ядер блуждающих нервов, по блуждающим нервам возбуждение идет к сердцу и его сокращения ослабляются, их ритм замедляется, а значит, восстанавливается исходный уровень АД.

Если давление крови в сосудах уменьшается, поток афферентных импульсов от рецепторов в продолговатый мозг уменьшается, значит уменьшается и тонус ядер блуждающего нерва, вследствие чего усиливается влияние симпатической нервной системы на сердце: частота сердечных сокращений, их сила увеличиваются и АД возвращается к норме.

Сердечная деятельность меняется и при возбуждении рецепторов имеющихся в самом сердце. В правом предсердии есть механорецепторы, реагирующие на растяжение. При усилении притока крови к сердцу эти рецепторы возбуждаются, по чувствительным волокнам блуждающего нерва нервные импульсы идут в продолговатый мозг, активность центров блуждающих нервов уменьшается и увеличивается тонус симпатической нервной системы. В связи с этим увеличивается частота сердечных сокращений и сердце выбрасывает излишки крови в артериальную систему. Этот рефлекс назван рефлексом Бейнбриджа, или разгрузочным рефлексом.