Функции центромеры. Локализация и функции центромер хромосом


№9, 2007 г.

© Вершинин А.В.

Центромеры и теломеры хромосом

А.В. Вершинин

Александр Васильевич Вершинин , д.б.н., гл.научн.сотр. Института цитологии и генетики СО РАН.

Что такое хромосомы, сегодня известно почти каждому. Эти ядерные органеллы, в которых локализуются все гены, и составляют кариотип данного вида. Под микроскопом хромосомы выглядят как однородные, вытянутые темные палочкообразные структуры, и вряд ли увиденная картина покажется интригующим зрелищем. Тем более, что препараты хромосом великого множества живых существ, обитающих на Земле, отличаются разве что числом этих палочек да модификациями их формы. Однако есть два свойства, характерные для хромосом всех видов. Первое - наличие обязательного сжатия (или перетяжки), расположенного или посередине, или смещенного к одному из концов хромосомы, получившего название “центромера”. Второе - присутствие на каждом конце хромосомы специализированной структуры - теломеры (рис.1). Различные гены, расположенные вдоль плеч (частей хромосомы от центромеры до физического конца) хромосом, вместе с регуляторными последовательностями ДНК ответственны за выполнение разнообразных функций. Это и обеспечивает уникальность генетической информации, закодированной в каждом плече каждой отдельной хромосомы.

Центромерные и теломерные районы занимают особое положение, ибо выполняют крайне важные, но одни и те же функции в хромосомах всех видов эукариот. Многочисленные исследования пока не дали ясного ответа на вопрос, какие молекулярные структуры ответственны за выполнение этих функций и как они их осуществляют, но очевидный прогресс в этом направлении в последние годы достигнут.

До выяснения молекулярной структуры центромер и теломер полагали, что их функции должны определяться (кодироваться) универсальными и в тоже время специфичными для данных районов последовательностями ДНК. Но прямое определение первичной последовательности нуклеотидов (секвенирование ДНК) осложнялось тем, что эти районы, как правило, соседствуют в хромосомах с участками высокой концентрации повторяющихся последовательностей ДНК. Что сегодня известно об этих функционально важных районах хромосом?

Центромеры

К середине прошлого столетия многочисленные цитологические исследования показали определяющую роль центромеры в морфологии хромосом. Позднее установили, что центромера вместе с кинетохором (структурой, состоящей в основном из белков) ответственна за правильное расхождение хромосом в дочерние клетки в ходе клеточного деления. Направляющая роль центромеры в этом процессе очевидна: ведь именно к ней прикрепляется веретено деления, которое вместе с клеточными центрами (полюсами) составляет аппарат клеточного деления. Благодаря сокращению нитей веретена хромосомы движутся во время деления к полюсам клетки.

Обычно описывают пять стадий клеточного деления (митоза). Для простоты мы остановимся на трех основных этапах в поведении хромосом делящейся клетки (рис.2). На первом этапе происходит постепенное линейное сжатие и утолщение хромосом, затем образуется веретено деления клетки, состоящее из микротрубочек. На втором хромосомы постепенно продвигаются к центру ядра и выстраиваются вдоль экватора, вероятно, чтобы облегчить присоединение микротрубочек к центромерам. При этом ядерная оболочка исчезает. На последнем этапе половинки хромосом - хроматиды - расходятся. Создается впечатление, что микротрубочки, прикрепленные к центромерам, как буксир, тянут хроматиды к полюсам клетки. С момента расхождения бывшие сестринские хроматиды называются дочерними хромосомами. Они достигают полюсов веретена и собираются вместе в параллельном порядке. Образуется ядерная оболочка.

Рис. 2. Основные этапы митоза.
Слева направо: компактизация хромосом, образование веретена деления; выстраивание хромосом вдоль экватора клетки,
прикрепление веретена деления к центромерам; движение хроматид к полюсам клетки.

При тщательном наблюдении можно заметить, что в процессе клеточного деления в каждой хромосоме центромера находится на постоянной позиции. Она поддерживает тесную динамическую связь с клеточным центром (полюсом). Деление центромер происходит одновременно во всех хромосомах.

Разработанные в последние годы методы секвенирования позволили определить первичную структуру ДНК протяженных участков центромер человека, плодовой мухи Drosophila и растения Arabidopsis . Оказалось, что в хромосомах и человека, и растения центромерная активность связана с блоком тандемно организованных повторов (мономеров) ДНК, близких по размеру (170-180 нуклеотидных пар, нп). Такие участки называют сателлитной ДНК. У многих видов, в том числе и эволюционно далеких друг от друга, размер мономеров почти не отличается: различные виды обезьян - 171 нп, кукуруза - 180 нп, рис - 168 нп, насекомое хирономус - 155 нп. Возможно, это отражает общие требования, необходимые для центромерной функции.

Несмотря на то, что третичная структура центромер человека и арабидопсиса организована одинаково, первичные последовательности нуклеотидов (или порядок нуклеотидов) в их мономерах оказались совершенно разными (рис.3). Это удивительно для района хромосомы, выполняющего столь важную и универсальную функцию. Однако при анализе молекулярной организации центромер у дрозофилы обнаружили определенную структурную закономерность, а именно наличие участков из мономеров примерно одного размера. Так, у дрозофилы центромера Х-хромосомы состоит в основном из двух типов очень коротких простых повторов (ААТАТ и ААGАG), прерываемых ретротранспозонами (мобильными элементами ДНК) и “островками” более сложной ДНК. Все эти элементы нашли в геноме дрозофилы и вне центромер, однако последовательностей ДНК, характерных для каждой центромеры, у них не обнаружили. Значит, сами по себе центромерные последовательности ДНК недостаточны и необязательны для образования центромеры.

Рис. 3. Структура ДНК в центромерах человека и растения.

Прямоугольники соответствуют тандемно организованным мономерам с идентичной последовательностью нуклеотидов внутри (первичная структура ДНК). У разных видов первичная структура ДНК мономеров различается, а вторичная представляет собой спираль. Последовательность мономеров отражает структурную организацию ДНК более высокого уровня.
Это предположение подтверждается и проявлением центромерной активности за пределами нормальных центромер. Такие неоцентромеры ведут себя как обычные центромеры: образуют цитологически различимую перетяжку и формируют кинетохор, связывающий белки. Однако анализ ДНК двух неоцентромер человека и обычной центромеры общих последовательностей не выявил, что говорит о возможной роли других структурных компонентов хромосомы. Ими могут быть гистоновые и негистоновые белки, которые связываются с ДНК, формируя нуклеосомную структуру хроматина.

Функциональную роль центромерной структуры хроматина подтверждает присутствие специфических для каждого биологического вида варианта гистона Н3 в центромерном хроматине: у человека они названы CENP-A, у растений - CENH3. Среди множества имеющихся в кинетохоре белков только два, СЕNН3 и центромерный белок С (СЕNР-С), непосредственно связываются с ДНК. Возможно, именно CENH3, взаимодействуя с другими гистонами (Н2А, Н2В и Н4), формирует и определяет специфический для центромер тип нуклеосом. Такие нуклеосомы могут служить своего рода якорями для образования кинетохора. Варианты гистона Н3 в центромерах различных видов подобны канонической молекуле гистона Н3 в участках взаимодействия с другими гистоновыми белками (Н2А, Н2В, Н4). Однако участок центромерного гистона Н3, взаимодействующий с молекулой ДНК, видимо, находится под действием движущего отбора. Как уже говорилось, первичная структура центромерной ДНК отличается между видами, и было высказано предположение, что центромерный гистон Н3 коэволюционирует вместе с центромерной ДНК, в частности у дрозофилы и арабидопсиса .

Обнаружение центромерного гистона Н3 породило крайнюю точку зрения, согласно которой центромерная функция и ее полная независимость от первичной структуры ДНК определяется нуклеосомной организацией и этим гистоном. Но достаточно ли этих факторов для полноценной активности центромеры? Модели, игнорирующие роль первичной структуры ДНК, должны предполагать случайное распределение изменений в структуре центромерной ДНК в различных популяциях в отсутствие отбора. Однако анализ сателлитной ДНК в центромерах человека и Arabidopsis выявил консервативные районы, так же как и районы с более высокой, чем средняя, вариабильностью, что указывает на давление отбора на центромерную ДНК. Кроме того, искусственные центромеры удалось получить только с a-сателлитными повторами человека, амплифицированными из природных центромер, но не из a-сателлитов прицентромерных районов хромосом.

Меньше принципиальных трудностей для объяснения встречают модели, в которых решающим фактором в определении позиции центромеры (сохраняющейся от поколения к поколению) и ее функций служит третичная (или даже более высокого порядка) структура ДНК. Ее консерватизм допускает большие вариации в последовательности нуклеотидов и не исключает тонкую подстройку первичной структуры.

В последние годы стало очевидным, что универсальных последовательностей ДНК, непосредственно определяющих функции центромер и теломер, нет. В этих районах хромосом ДНК служит платформой для сборки сложных, многокомпонентных ДНК-белковых комплексов, которые и обеспечивают выполнение этих функций. Более подробно о комплементарной организации этих комплексов и их координированного функционирования можно прочитать в нашем обзоре . Наряду со специфическими для центромер и теломер компонентами этих комплексов в их состав входят и такие, которые участвуют в выполнении нескольких функций, иногда даже противоположных. Например, Ku70/80-гетеродимер входит в состав теломер и работает как позитивный регулятор длины теломер у дрожжей и негативный регулятор - у растения арабидопсис. В тоже время этот белок участвует в распознавании разрывов хромосом и их восстановлении. Без сомнения, одно из наиболее актуальных направлений исследований - выявление молекулярной природы механизмов регуляции разнообразных молекулярных комплексов, обеспечивающих активность центромер и теломер.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 04-04-48813), INTAS (03-51-5908)
и Программы интеграционных проектов СО РАН (проект 45/2).

Литература

1. Talbert P.B., Bryson T.D., Henikoff S. // J. Biol. 2004. V.3. Article 18.

2. Вершинин А.В. // Генетика. 2006. V.42. P.1200-1214.

3. Wu J., Yamagata H., Hayashi-Tsugane M. et al. // Plant Cell. 2004. V.16. P.967-976.

4. Scott K.C., Merrett S.L., Willard H.F. // Curr. Biol. 2006. V.16. P.119-129.

5. Muller H.J. Further studies on the nature and causes of gene mutations // Proc. Sixth Int. Congr. Genet. 1932. V.1. P.213-255.

6. Louis E.J., Vershinin A.V . // BioEssays. 2005. V.27. P.685-697.

7. Lange T.de // Genes Dev. 2005. V.19. P.2100-2110.

Функции

Центромера принимает участие в соединении сестринских хроматид , формировании кинетохора , конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза . На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анэуплоидии , которая может иметь тяжелые последствия (например, синдром Дауна у человека, связанный с анэуплоидией (трисомией) по 21-й хромосоме).

Центромерная последовательность

У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности . Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична. У человека основная повторяющаяся последовательность называется α-сателлит, однако в этом регионе имеется несколько других типов последовательностей. Установлено, однако, что повторов α-сателлита недостаточно для образования кинетохора и, что известны функционирующие центромеры, не содержащие α-сателлитной ДНК.

Наследование

В определении местоположения центромеры у большинства организмов значительную роль играет эпигенетическое наследование . Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке. Предполагается, что должен быть какой-то первичный способ определения местоположения центромеры, даже если впоследствии её местоположение определяется эпигенетическими механизмами.

Строение

ДНК центромеры обычно представлена гетерохроматином , что, возможно, существенно для ее функционирования. В этом хроматине нормальный гистон H3 замещен центромер-специфическим гистоном CENP-A (CENP-A характерен для пекарских дрожжей S. cerevisiae , но сходные специализированные нуклеосомы, похоже, присутствуют во всех эукариотных клетках). Считается, что присутствие CENP-A необходимо для сборки кинетохора на центромере и может играть роль в эпигенетическом наследовании местоположения центромеры.

В некоторых случаях, например у нематоды Caenorhabditis elegans , у чешуекрылых , а также у некоторых растений, хромосомы голоцентрические . Это означает, что на хромосоме нет характерной первичной перетяжки - специфического участка, к которому преимущественно крепятся микротрубочки веретена деления. В результате кинетохор имеет диффузный характер, и микротрубочки могут прикрепляться по всей длине хромосомы.

Аберрации центромер

В некоторых случаях у человека отмечено формирование дополнительных неоцентромер . Обычно это сочетатся с инактивацией старой центромеры, поскольку дицентрические хромосомы (хромосомы с двумя активными центромерами) обычно разрушаются при митозе.

В некоторых необычных случаях было отмечено спонтанное образование неоцентромер на фрагментах распавшихся хромосом. Некоторые из этих новых позиций изначально состояли из эухроматина и вовсе не содержали альфа-сателлитной ДНК.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Центромера" в других словарях:

    Центромера … Орфографический словарь-справочник

    Кинетохор Словарь русских синонимов. центромера сущ., кол во синонимов: 1 кинетохор (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    - (от центр и греч. meros часть) (кинетохор) участок хромосомы, удерживающий вместе две ее нити (хроматиды). Во время деления центромеры направляют движение хромосом к полюсам клетки … Большой Энциклопедический словарь

    ЦЕНТРОМЕРА, часть ХРОМОСОМЫ, которая появляется только в процессе деления клеток. Когда хромосомы сокращаются во время МЕЙОЗА или МИТОЗА, центромеры возникают в виде сужений, не содержащих никаких генов. С их помощью хромосомы прикрепляются к… … Научно-технический энциклопедический словарь

    - (от лат. centrum, греч. kentron срединная точка, центр и греч. meros часть, доля), кинетохор, участок хромосомы, контролирующий её движение к разным полюсам клетки во время деления митоза или мейоза; место прикрепления к хромосоме нитей… … Биологический энциклопедический словарь

    центромера - Ограниченная зона в хромосоме, включающая сайт прикрепления веретена при митозе или мейозе Тематики биотехнологии EN centromere … Справочник технического переводчика

    Центромера - * цэнтрамера * centromere or kinetochore консервативный район эукариотической хромосомы, к которому присоединяются нити веретена (см.) во время митоза (см.). ДНК, образующая Ц., состоит из трех доменов (элементов) CDE I, CDE II и CDE III. CDE I и … Генетика. Энциклопедический словарь

    - (от центр и греч. méros часть) (кинетохор), участок хромосомы, удерживающий вместе две её нити (хроматиды). Во время деления центромеры направляют движение хромосом к полюсам клетки. * * * ЦЕНТРОМЕРА ЦЕНТРОМЕРА (от центр (см. ПРЯМОЕ ПРАВЛЕНИЕ) и … Энциклопедический словарь

    Centromere центромера. Участок моноцентрической хромосомы, в котором сестринские хроматиды соединены между собой и в области которой прикрепляются нити веретена, обеспечивающие движение хромосом к полюсам деления; обычно прицентромерные районы… … Молекулярная биология и генетика. Толковый словарь.

    центромера - centromera statusas T sritis augalininkystė apibrėžtis Pirminė chromosomos persmauga, prie kurios prisitvirtina achromatinės verpstės siūlai. atitikmenys: angl. centromere; kinetochore rus. кинетохор; центромера … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Центромеры - это хромосомные структуры ответственные за направление движения хромосом во время митоза. К функциям центромер относятся адгезия сестринских хроматид, образование кинетохора, спаривание гомологичных хромосом и вовлечение в контроль генетической экспрессии. У большинства эукариот центромеры не содержат определенной последовательности ДНК. Обычно они содержат повторы (например, сателлитной ДНК), схожие, но не идентичные. У нематоды Caenorhabditis elegans и некоторых растений хромосомы голоцентрические, т.е. образование кинетохора не локализовано определенным участком, а происходит диффузно по всей длине хромосомы.

Центромеры дрожжей

Центромера Sp длинной 35-110 тпн (чем хромосома длиннее, тем центромера меньше) и состоит из двух доменов - центральной коровой области и внешней области повторов (otr), предстравленной гетерохроматином (рис1). Центральная коровая область состоит из области неповторяющейся ДНК (cnt) и области инвертированных
повторов (imt) по краям cnt. В центральной коровой области нормальный гистон H3 заменен своим аналогом (CENP-A у Sc) и в этом месте собирается кинетохор. Маркерные гены встраеваемые в центромерную последовательность становятся транскрипционно неактивными. Их замолкание зависит от положения, например, на внешних повторах оно сильнее, а в центральной области менее выражено. Белки Mis6, Mis12, Mal2 и Sim4 связываются с центральным районом центромеры. Центральный район частично переваривается микрококковой нуклеазой, что указывает на особую организацию хроматина, причем эта организация не зависит от ДНК (ДНК перенесенная в Sp или в другие участки хромосомы не сохраняет такую организацию). Внешние повторы упакованы в нуклеосомы, с деацетилированными гистонами (при помощи деацетилаз Clr3, Clr6 и Sir2). Метилтрансфераза Clr4 диметилирует H3K9, на который садится Swi6 (аналог HP1) и Chp1. Таким образом, на центромере формируется гетерохроматин
(см. обзор Гетерохроматин). Swi6 отвечает за присоединение когезинов к области внешних повторов. otr состоят из dg и dh повторов, разделенные другими повторами. Внутренние и внешние повторы содержат кластеры генов тРНК. Установлено, что dg повторы имеют первостепенную роль в установлении центромерной активности.
ДНК центральной коровой области АТ-богатая и состоит из трех участков cnt1, cnt3 - гомологичны на 99%, расположены по кроям от сnt2 гомологичного с ними на 48%. Левый и правый imr инвертированы и уникальны для каждой центромеры.

Рис. 1

Все 16 центромер Sc имеют длину 90 пн и содержат три элемента: CDEI, CDEII и CDEIII (рис.2). CDEII - это АТ-богатый неконсервативный спейсер длинной 78-90 пн, разделяющий CDEI и CDEIII. CDEI имеет длину 8 пн. Этот участок не существеннен для центромерной активности, но его делеция повышает вероятность неправильного расхождения хромосом во время митоза. СDEII - 78-90 пн, содержит ~90% АТ-пар. Делеции в этом участке прерывают образование центромеры, не нарушая расхождение хромомсом. СDEIII - 26 пн содержит несовершенные палиндромы. Одиночная нуклеотидная замена в этом участке полностью прерывает центромерную активность.

Рис. 2

Рис. 3 Последовательности центромерной ДНК хромосом Sc



Центромеры человека

Центромера человека представляет участок 1-4 Мпн AT-богатого а-сателлита длинной ~171 пн (альфоид ). Другие сателлиты также присутствуют. В пределах повторов устанавливается место образования центромеры называемое неоцентромера. Первичная последовательность ДНК в установившейся неоцентромере не имеет значения. Не все а-сателлиты становятся центромерой, не смотря на присутствие двух локусов богатых а-сателлитом, активной центромерой становится только один из них. Интактная ДНК, содержащая альфоид и помещенная в ядро, не образует активной центромеры, поэтому первичный механизм образования активной центромеры остается неясным.

Центромера - участок хромосомы, характеризующийся специфической последовательностью нуклеотидов и структурой. Центромера играет важную роль в процессе деления клеточного ядра и в контроле экспрессии генов (процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт - РНК или белок).

Центромера принимает участие в соединении сестринских хроматид, формировании кинетохора (белковая структура на хромосоме, к которой крепятся волокна веретена деления во время деления клетки), конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза. На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате - к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии, которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме). У большинства эукариот центромера не имеет определённой, соответствующей ей нуклеотидной последовательности. Обычно она состоит из большого количества повторов ДНК (например, сателлитной ДНК), в которых последовательность внутри индивидуальных повторяющихся элементов схожа, но не идентична.

Дочерние хромосомы образуют центромеры в тех же местах, что и материнская хромосома, независимо от характера последовательности, расположенной в центромерном участке.

38. B – хромосомы

Хромосома, присутствующая в хромосомном наборе сверх нормального диплоидного числа хромосом, имеются в кариотипе только у отдельных особей в популяции.; B-хромосомы известны у многих растений и (несколько реже) у животных, их число может значительно варьировать (от 1 до нескольких десятков); часто B-хромосомы состоят из гетерохроматина (но могут содержать - видимо, вторично - и эухроматин) и генетически пассивны, хотя могут оказывать побочные эффекты - например, у насекомых наличие B-хромосом часто обуславливает повышенную аберрантность сперматозоидов; в клеточных делениях могут быть стабильны, но чаще нестабильны (иногда митотически стабильны, но нестабильны в мейозе, где чаще образуют униваленты); изредка B-хромосомы являются изохромосомы; механизмы появления B-хромосом различны - фрагментация, гетерохроматинизация лишних хромосом после неправильного анафазного расхождения и т.п. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования

39 – Политенные хромосомы

Гигантские интерфазные хромосомы, возникающие в некоторых типах специализированных клеток в результате двух процессов: во-первых, многократной репликации ДНК, не сопровождаемой делением клетки, во-вторых, боковой конъюгации хроматид. Клетки, в которых есть политенные хромосомы, теряют способность к делению, они являются дифференцированными и активно секретирующими, то есть, политенизация хромосом является способом увеличения числа копий генов для синтеза какого-либо продукта. Политенные хромосомы можно наблюдать у двукрылых, у растений в клетках, связанных с развитием зародыша, уинфузорийпри формировании макронуклеуса. Политенные хромосомы значительно увеличиваются в размерах, что облегчает их наблюдение и что позволяло изучать активностьгеновещё в 1930-е годы. Принципиальным отличием от других типов хромосом является то, что политенные хромосомы являются интерфазными, тогда как все остальные можно наблюдать только во время митотического или мейотического деления клетки.

Классическим примером являются гигантские хромосомы в клетках слюнных желёзличинокDrosophila melanogaster(Дрозофила меланогастер).Репликация ДНКв этих клетках не сопровождаетсяделением клетки, что приводит к накоплению вновь построенных нитейДНК. Эти нити плотно соединены между собой по длине. Кроме того, в слюнных железах происходит соматическийсинапсисгомологичных хромосом, то есть, не только сестринские хроматиды конъгируют между собой, но и гомологичные хромосомы каждой пары конъюгируют между собой. Таким образом, в клетках слюнных желёз можно наблюдать гаплоидное число хромосом

40 – Хромосомы типа ламповых щёток

Хромосомы типа ламповых щеток, впервые обнаруженные В. Флеммингом в 1882 году, - это специальная форма хромосом, которую они приобретают в растущихооцитах(женских половых клетках) большинства животных, за исключением млекопитающих. Это гигантская форма хромосом, которая возникает вмейотическихженских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторыхземноводныхиптиц.

В растущих ооцитахвсех животных, за исключением млекопитающих, во время протяженной стадии диплотены профазымейозаI активнаятранскрипциямногих последовательностей ДНК приводит к преобразованиюхромосомв хромосомы, по форме напоминающие щетки для чистки стёкол керосиновых ламп (хромосомы типа ламповых щёток). Они представляют собой сильно деконденсированные полубиваленты, состоящие из двух сестринских хроматид. Хромосомы типа ламповых щеток можно наблюдать с помощью световоймикроскопии, при этом видно, что они организованы в виде сериихромомеров(содержат конденсированныйхроматин) и исходящих из них парных латеральных петель (содержат транскрипционно активныйхроматин).

Хромосомы типа ламповых щёток амфибий и птиц могут быть изолированы из ядра ооцитас помощью микрохирургических манипуляций.

Эти хромосомы производят огромное количество РНК, синтезируемой на латеральных петлях. Благодаря гигантским размерам и выраженной хромомерно-петлевой организации, хромосомы типа ламповых щёток на протяжении многих десятилетий служат удобной моделью для изучения организации хромосом, работы генетического аппарата и регуляции экспрессиигеновво время профазымейозаI. Кроме того, хромосомы этого типа широко используются для картирования последовательностей ДНК с высокой степенью разрешения, изучения феноменатранскрипциинекодирующих белки тандемных повторов ДНК, анализа распределения хиазм и др..