Теорема и циркуляции вектора напряженности электростатического поля. Теорема о циркуляции вектора напряженности

Поле Е обладает двумя чрезвычайно важными свойствами, знание которых помогло глубже проникнуть в суть самого понятия поля и сформировать его законы. Эти свойства - теорема Гаусса и теорема о циркуляции вектора Е - связаны с двумя важнейшими математическими характеристиками всех векторных полей: циркуляцией и потоком . Пользуясь только этими двумя понятиями можно описать все законы. Рассмотрим эти свойства.

Из механики известно, что любое стационарное поле центральных сил является консервативным, т.е. работа сил этого поля не зависит от пути, а определяется только положением начальной и конечной точек перемещения. Именно таким свойством обладает электростатическое поле - поле, образованное системой неподвижных точечных зарядов.

1. Рассчитаем работу при перемещении точечного заряда в электростатическом поле.

Пусть электростатическое поле создано зарядом + Q. Будем перемещать другой точечный заряд q (q – пробный положительный точечный заряд) в электростатическом поле, созданном зарядом (+Q) из точки 1 в точку 2 по произвольной траектории (смотри рис. 6.1.). Работу будет совершать сила F К – кулоновская сила, действующая на заряд q . Работа силыF К на элементарном перемещении dl равна:

Рис.6.1.Работа перемещения точечного заряда в электростатическом поле

Для нахождения работы перемещения заряда q из точки 1 в точку 2 проинтегрируем (6.2) по переменной r .

Работа перенесения заряда q из точки 1 в точку 2 не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек перемещения, следовательно , электростатическое поле точечного заряда является потенциальным, а кулоновские силы – консервативными.

.

(6.3 )

Покажем, что работа сил ЭС поля по любому замкнутому пути равна 0 .

Пусть перемещается положительный единичный заряд q из точки 1 в неё же по замкнутому пути - 1а2b1- замкнутый контур Г (рис.6.2) . Согласно соотношению (6.3) работа будет равна 0, т.к. r 1 = r 2 . Но, с другой стороны величину этой работы можем записать, используя связь между кулоновской силой и вектором напряженности электростатического поля (q ) в виде:

Но, модуль вектора напряженности точечного заряда равен kQ/r 2 =| |, следовательно элементарную работу сил электростатического поля можно представить в виде выражения:

Интеграл r dr = - называют циркуляцией вектора Е .

Теорема о циркуляции вектора Е: Циркуляция вектора напряженности электростатического поля по произвольному замкнутому контуру тождественно равна нулю.

Циркуляция вектора напряженности электростатического поля. Потенциал электростатического поля. Потенциальная энергия. Связь напряженности и потенциала .

Циркуляция вектора напряженности электростатического поля вдоль замкнутого контура

Электростатический потенциа́л (см. также кулоновский потенциал ) - скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда: Пусть в пространстве существует система точечных зарядов Q i (i = 1, 2, ... ,n ). Энергия взаимодействия всех n зарядов определится соотношение ,

где r ij - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком .

E = - grad = -Ñ .


Проводники в электростатическом поле. Электроемкость уединенного проводника. Конденсаторы. Энергия уединенного проводника и системы зарядов.

Проводники в электростатическом поле. Электростатическая индукция.
К проводникам относят вещества, у которых имеются свободные заряженные частицы, способные двигаться упорядоченно по всему объему тела под действием электрического поля. Заряды таких частиц называют свободными.
Проводниками являются металлы, некоторые химические соединения, водные растворы солей, кислот и щелочей, расплавы солей, ионизированные газы.
Рассмотрим поведение в электрическом поле твердых металлических проводников. В металлах носителями свободных зарядов являются свободные электроны, называемые электронами проводимости.
Если внести незаряженный металлический проводник в однородное электрическое поле, то под действием поля в проводнике возникает направленное движение свободных электронов в направлении, противоположном направлению вектора напряженности Ео этого поля. Электроны будут скапливаться на одной стороне проводника, образуя там избыточный отрицательный заряд, а их недостача на другой стороне проводника приведет к образованию там избыточного положительного заряда, т.е. в проводнике произойдет разделение зарядов. Эти нескомпенсированные разноименные заряды появляются на проводнике только под действием внешнего электрического поля, т.е. такие заряды являются индуцированными (наведенными), а в целом проводник по-прежнему остается незаряженным.

Такой вид электризации, при котором под действием внешнего электрического поля происходит перераспределение зарядов между частями данного тела, называют электростатической индукцией.
Появившиеся вследствие электростатической индукции на противоположных частях проводника нескомпенсированные электрические заряды создают своё собственное электрическое поле, его напряженность Ес внутри проводника направлена против напряженности Ео внешнего поля, в которое помещен проводник. По мере разделения зарядов в проводнике и накопления их на противоположных частях проводника напряженность Ес внутреннего поля увеличивается и становится равной Ео. Это приводит к тому, что напряженность Е результирующего поля внутри проводника становится равной нулю. При этом наступает равновесие зарядов на проводнике.

Рассмотрим уединенный проводник, которому сообщается некоторый электрический заряд Q . Как мы знаем, этот электрический заряд распределяется по поверхности проводника и в окружающем пространстве создает электрическое поле. Напряженность этого поля не постоянна, она изменяется как по величине, так и по направлению (рис. 355).

рис. 355

Но потенциал проводника постоянен во всех его точках. Очевидно, что данный потенциал пропорционален заряду проводника. Следовательно, отношение заряда проводника к его потенциалу не зависит от величины электрического заряда, поэтому это отношение является «чистой» характеристикой проводника, находящегося в определенной среде, которая называется электрической емкостью проводника (электроемкостью).
 Итак, электроемкостью проводника называется отношения электрического заряда проводника к его потенциалу

Как неоднократно было сказано, электрический потенциал определяется с точностью до произвольной постоянной. Во избежание неопределенности, в определении (1) полагают, что потенциал стремится к нулю при бесконечном удалении от рассматриваемого проводника:

Можно дать эквивалентное определение: электроемкость проводника равна электрическому заряду, который необходимо сообщить проводнику, чтобы повысить его потенциал на единицу 1 .


Электрический ток. Плотность тока. ЭДС. Напряжение. Закон Ома. Сопротивление проводника. Удельное сопротивление.

Электри́ческий ток - направленное (упорядоченное) движение заряженных частиц

Различают переменный, постоянный ток

Постоянный ток - ток, направление и величина которого слабо меняются во времени.

Переменный ток - ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным.

Сила тока - физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Величина, равная работе сторонних сил над единичным положительным зарядом называется электродвижущей силой (эдс) .

Закон Ома для участка цепи (без ЭДС):

Закон Ома для полной цепи :

где R – внешнее сопротивление цепи,

r – внутреннее сопротивление источника тока,

R + r – называется полным сопротивлением цепи.

Следствия :

а) если R → 0, источник замкнут накоротко:

где I кз – ток короткого замыкания;

б) если R → ∞, цепь разомкнута: I = 0; U = ε,

т.е. ЭДС источника численно равна напряжению на его зажимах при разомкнутой внешней цепи.

Электрическое сопротивление (R) - это физическая величина, численно равная отношению
напряжения на концах проводника к силе тока, проходящего через проводник.

Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника. где l - длина проводника (м), S - площадь поперечного сечения (кв.м),
r (ро) - удельное сопротивление (Ом м).

Работа сил электрического поля. Циркуляция вектора напряженности электрического поля. Рассмотрим электростатическое поле, создаваемое неподвижным точечным зарядом Q. В любой точке этого поля на точечный заряд Qo действует кулоновская сила. Тогда работа, совершаемая этой силой над зарядом Qo на элементарном перемещении dl, или: da = = Fdlcosα = Так как dlcosα = dr, то da =


Работа при перемещении заряда Qo вдоль произвольной траектории из точки 1 в точку 2 Работа, как следует из формулы, не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы - консервативными Из выражения следует также, что работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т. е.






Следствия теоремы 1. Из теоремы следует, что циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле Е называют потенциальным, если циркуляция вектора Е по любому замкнутому контуру равна нулю. 2. Теорема справедлива только для электростатического поля. 3. Линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность. Предположим, что линия напряженности замкнута. Если выбрать ее в качестве контура интегрирования L, то при обходе этого контура в положительном направлении линии напряженности, подынтегральное выражение в интеграле и сам интеграл положительны. Это, однако, противоречит теореме, что и доказывает, что линии напряженности вектора Е замкнутыми быть не могут.


Потенциал электростатического поля разность потенциалов Работу сил электростатического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Qo в начальной и конечной точках поля, создаваемого зарядом Q: Следовательно: потенциальная энергия заряда Qo в поле заряда Q равна Потенциальная энергия W определяется с точностью до постоянной С. Значение постоянной обычно выбирается так, чтобы при удалении заряда на бесконечность (r) потенциальная энергия обращалась в нуль (W = 0), тогда С = 0 и потенциальная энергия заряда Qo, находящегося в поле заряда Q на расстоянии r от него, равна


0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 7 Для одноименных зарядов Q 0 Q > 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q title="Для одноименных зарядов Q 0 Q > 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q 0 Q


Потенциал Потенциалом в какой-либо точке электростатического поля называется физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку. Если поле создается системой п точечных зарядов, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей этих зарядов, создаваемых в этой точке каждым зарядом в отдельности: Потенциал поля, создаваемого точечным зарядом Q,


Работа, совершаемая силами электростатического поля при перемещении заряда Qo из точки 1 в точку 2, может быть записана в виде Таким образом, работа, совершаемая силами поля над зарядом Qo, равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках (на убыль потенциала). Из формулы следует, что разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного положитель­ного заряда из точки 1 в точку 2. Если заряд Qo перемешать из произвольной точки 1 за пределы поля, т. е. на бесконечность (где, по условию, потенциал равен нулю), то работа сил электростатического поля, и следовательно


Потенциал - скалярная физическая величина, определяемая работой по перемещению единичного положительного заряда из данной точки поля на бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля. Размерность потенциала вольт (В). 1В - потенциал такой точки поля, в которой заряд в 1Кл обладает потенциальной энергией 1Дж (1В = 1Дж/Кл). Учитывая размерность вольта, единицу напряженности электростатического поля можно выразить как В/м:


Связь между напряженностью и потенциалом эквипотенциальные поверхности Рассмотрим, как связаны между собой напряженность электростатического поля Е (силовая векторная характеристика) и потенциал (энергетическая скалярная характеристика). Консервативная сила и потенциальная энергия связаны между собой соотношением: Для заряда, находящегося в потенциальном поле, а так как электростатическое поле потенциально, получим, F = Q 0 E и W = Q 0.


Устанавливающую связь между напряженностью и потенциалом электростатического поля. Знак «минус» указывает на то, что вектор напряженности Подставив эти выражения в и учитывая, что множитель Q 0 не зависит от координат, значит можно на него сократить, получим формулу поля направлен в сторону убывания потенциала




Работа сил поля при перемещении заряда Q 0 из точки 1 в точку 2 может быть записана также в виде Из формул и следует, что разность потенциалов где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, поскольку работа сил электростатического поля не зависит от траектории перемещения.


Формула позволяет решить обратную задачу по заданным значениям Е найти разность потенциалов между произвольными точками поля. Поверхность, все точки которой имеют одинаковый потенциал, называют эквипотенциальной поверхностью. Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю. Иными словами электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям. позволяет по известным значениям определить Е,


Вид линий напряженности (штриховые линии) и сечений эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (слева), разноименных точечных зарядов (справа) и одноименных положительных точечных зарядов (внизу). Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше.




С помощью линий напряженности электростатического поля можно охарактеризовать не только направление вектора Е, но и его модуль. Для этого линии напряженности проводят с определенной густотой: число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную лини­ям напряженности, должно быть равно модулю вектора Е.




Если площадка составляет с Е некоторый угол α, то число линий напряженности, пронизывающих элементарную площадку dS, нормаль п к которой образует угол α с вектором Е, равно ЕdScosα = E n dS, где Е п проекция вектора Е на нормаль п к площадке dS. Величину dФ E = E n dS = EdS называют потоком вектора напряженности сквозь площадку dS. Здесь dS = dSn - вектор, модуль которого равен dS, а направление совпадает с направлением нормали п к площадке. dS не является истинным вектором - это псевдовектор. Выбор направления вектора п (а следовательно, и dS) условен, так как его можно направить в любую сторону.




Для произвольной замкнутой поверхности S (во многих случаях в дальнейшем будут рассматриваться именно такие поверхности) поток вектора Е сквозь эту поверхность Часто в учебниках встречается запись тем не мене подразумевается, что интеграл двойной, так как берется по переменной второго порядка, по площади. Кольцо на знаке интеграла означает, что интеграл берется по замкнутой поверхности S.


Поток вектора Е - алгебраическая величина: зависит не только от конфигурации поля Е, но и от выбора направления п. Для замкнутых поверхностей за положительное направление нормали принимают внешнюю нормаль, т. е. нормаль, на­ правленную наружу области, охватываемой поверхностью.

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд Q o , то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна:

Работа при перемещении заряда Q o из точки 1 в точку 2:

Рабата не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы - консервативными.

Работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.

Этот интеграл называется циркуляцией вектора напряженности . Таким образом, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, обладающее таким свойством, называется потенциальным .

Из обращения в нуль циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность.

Было выявлено, что на заряд q , находящийся в электростатическом поле, действуют консервативные силы, причем работа А на замкнутом пути L равняется нулю:

A = ∮ L F ¯ d r ¯ = q ∮ L E ¯ d r ¯ = 0 , где r - это вектор перемещения. Данный интеграл представляет собой циркуляцию вектора напряженности электростатического поля.

Если единичный заряд положительный, то запись приобретает совсем другой вид. Интеграл левой части уравнения и является циркуляцией вектора напряженности по контуру L .

Теорема о циркуляции

Теорема 1

Электростатическое поле характеризуется циркуляцией его вектора напряженности по замкнутому полю и равняется нулю. Утверждение называют теоремой о циркуляции вектора напряженности электростатического поля.

Доказательство 1

Для ее доказательства основываются на работе поля по перемещению заряда, не зависящую от ее траектории. L 1 и L 2 обозначают в качестве различных путей между точками А и В. При замене их местами получим L = L 1 + L 2 . Теорема доказана

Так как линии на напряженности электростатического поля незамкнуты, то это применяют в качестве следствия. Их начало идет с положительных зарядов, а заканчивается отрицательными или их уходом в бесконечность. Теорема верна для статичных зарядов.

Еще одним следствием является непрерывность тангенциальных составляющих напряженности. Это говорит о том, что ее компоненты, являющиеся касательными к выбранной любой поверхности во всякой точке, на обеих сторонах содержат одинаковые значения.

Необходимо выделить произвольную часть поверхности S , которая опирается на контур L .

Рисунок 1

Определение 1

По формуле Стокса интеграл от ротора вектора напряженности r o t E → , взятый по поверхности
S , равняется циркуляции вектора напряженности вдоль контура, на который опирается данная поверхность.

Значение d S → = d S · n → , n → является единичным вектором, перпендикулярным участку d S . Интенсивность «завихрения» вектора характеризуется ротором r o t E → . Это рассматривают на примере наличия крыльчатки, помещенной в жидкости, изображаемой на рисунке 2 . Если ротор не равняется нулю, то крыльчатка будет продолжать вращение, причем с ростом скорости вращения увеличится модуль проекция ротора на ось крыльчатки.

Рисунок 2

Для вычисления ротора применяют формулы:

Если использовать уравнение (6) , то циркуляция вектора напряженности будет равной нулю.

При выполнении условия (8) для любой поверхности S , упирающейся на контур L , возможно с подынтегральным выражением, причем для каждой точки поля.

Действие производится аналогично крыльчатке из рисунка 2 . На ее концах имеются одинаковые заряды, равные q . Вся система находится в однородном поле с напряженностью E . Если r o t E → ≠ 0 , то предусмотрено вращение с ускорением, зависящим от проекции ротора на ось крыльчатки. Если поле электростатическое, тогда движение по окружности не происходило бы ни при каком расположении оси. Основная отличительная особенность электростатического поля в том, что оно является безвихревым.

Определение 2

Представление теоремы о циркуляции в дифференциальном виде:

Пример 1

Дан рисунок 3 с изображением электростатического поля. Что можно сказать о его характеристиках?

Рисунок 3

Решение

По рисунку видно, что существование электростатического поля невозможно. Для выделенного пунктиром контура циркуляции вектора напряженности применяется формула:

∮ L E → d s → ≠ 0 .

Это невозможно, так как существует противоречие теоремы о циркуляции. Определение напряженности поля (измеряется в вольтах на метр В м или в ньютонах на кулон Н К) идет с помощью густоты силовых линий, причем с различными значениями. Работа по замкнутому кругу не равна нулю, значит, циркуляция вектора напряженности также нулю не равняется.

Пример 2

Показать, что тангенциальные составляющие вектора напряженности электростатического поля не изменяются при переходе через границу раздела диэлектриков, основываясь на теореме о циркуляции.

Решение

Если рассмотреть границу между двумя диэлектриками с диэлектрическими проницаемостями ε 2 и ε 1 , изображенных на рисунке 4 , то видно, что ось Х проходит через середины сторон b . На границе выбирается прямоугольный контур с параметрами длины (а) и ширины (b) .

Рисунок 4

Выполнение теоремы о циркуляции обусловлено наличием электростатического поля. Его находят из формулы:

∮ L E → d s → = 0 .

Если контур имеет небольшие размеры, тогда циркуляция вектора напряженности, согласно формуле ∮ L E → d s → = 0 , представляется в виде:

∮ L E → d s → = E 1 x a - E 2 x a + E b 2 b = 0 .

E b - это среднее значение E → на участках, перпендикулярных к границе раздела.

Из формулы ∮ L E → d s → = E 1 x a - E 2 x a + E b 2 b = 0 следует:

E 2 x - E 1 x a = E b 2 b .

Когда b → 0 , тогда

Выполнение выражения E 2 x = E 1 x возможно при произвольном выборе оси Х, которая располагается на границе раздела диэлектриков. Можно представить вектор напряженности в виде двух: тангенциальной E τ и нормальной E n:

E 1 → = E 1 n → + E 1 τ → , E 2 → = E 2 n → + E 2 τ → .

Отсюда следует, что

E τ 1 = E τ 2 , где E τ i является проекцией вектора напряженности на орт τ , который направлен вдоль границы раздела диэлектриков.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter