Из за чего может быть тремор. Тремор причины лечение

Механизмы формирования защитных реакций

Защита организма от всего чужеродного (микроорганизмов, чужеродных макромолекул, клеток, тканей) осуществляется с помощью неспецифических факторов защиты и специфических факторов защиты – иммунных реакций.

Неспецифические факторы защиты возникли в филогенезе раньше, чем иммунные механизмы и первыми включаются в защиту организма от различных антигенных раздражителей, степень их активности не зависит от иммуногенных свойств и кратности воздействия патогена.

Иммунные факторы защиты действуют строго специфически (на антиген-А вырабатываются только анти-А-антитела или анти-А-клетки), и в отличие от неспецифических факторов защиты сила иммунной реакции регулируется анти­геном, его типом (белок, полисахарид), количеством и кратностью воздействия.

К неспецифическим факторам защиты организма относятся:

1. Защитные факторы кожи и слизистых оболочек.

Кожа и слизистые покровы образуют первый барьер защиты организма от инфекций и других вредных воздействий.

2.Воспалительные реакции.

3.Гуморальные вещества сыворотки и тканевой жидкости (гуморальные факторы защиты).

4.Клетки с фагоцитарными и цитотоксическими свойствами (клеточные факторы защиты),

Специфические факторы защиты или иммунные механизмы защиты включают:

1. Гуморальный иммунитет.

2. Клеточный иммунитет.

1. Защитные свойства кожи и слизистых оболочек обусловлены:

а) механической барьерной функцией кожи и слизистых покровов. Нор­мальная неповрежденная кожа и слизистые оболочки непроницаемы для микро­организмов;

б) присутствием на поверхности кожи жирных кислот, смазывающих и обеззараживающих поверхность кожи;

в) кислой реакцией секретов, выделяющихся на поверхность кожи и сли­зистых оболочек, содержанием в секретах лизоцима, пропердина и других фер­ментативных систем, действующих бактерицидно на микроорганизмы. На кожу открываются потовые и сальные железы, секреты которых имеют кислую рН.

В секретах желудка и кишечника содержатся пищеварительные фермен­ты, которые подавляют развитие микроорганизмов. Кислая реакция желудочно­го сока не пригодна для развития большинства микроорганизмов.



Слюна, слеза и другие секреты в норме обладают свойствами, не допус­кающими развития микроорганизмов.

Воспалительные реакции.

Воспалительная реакция является нормальной реакцией организма. Разви­тие воспалительной реакции приводит к привлечению к месту воспаления фагоцитирующих клеток и лимфоцитов, активации тканевых макрофагов и выделе­нию из клеток, вовлеченных в воспаление, биологически активных соединений и веществ с бактерицидными и бактериостатическими свойствами.

Развитие воспаления способствует локализации патологи­ческого процесса, элиминации из очага воспаления факторов, вызвавших вос­паление, восстановлению структурной целостности ткани и органа. Схематично процесс острого воспаления приведен на рис. 3-1.

Р и с. 3-1. Острое воспаление.

Слева направо представлены процессы, происходящие в тканях и сосудах при повреждении тканей и развитии в них воспаления. Как правило, повреждение тканей сопровождается развитием инфекции (на рисунке бактерии обозначены черными палочками). Центральную роль в остром воспалительном процессе играют тканевые тучные клетки, макрофаги и поступающие из крови полиморфно-ядерные лейкоциты. Они являются источником биологически активных веществ, провоспалительных цитокинов, лизосомных ферментов, всех факторов проявления воспаления: покраснение, жар, отек, болезненность. При переходе острого воспаления в хроническое основная роль в поддержании воспаления переходит к макрофагам и Т-лимфоцитам.

Гуморальные факторы защиты.

К неспецифическим гуморальным факторам защиты относятся: лизоцим, комплемент, пропердин, В-лизины, интерферон.

Лизоцим. Лизоцим открыт П. Л. Лащенко. В 1909 г. он впервые обнару­жил, что яичный белок содержит особое вещество, способное бактерицидно действовать на некоторые виды бактерий. Позже было установлено, что это действие обусловлено особым ферментом, который в 1922 г. Флемингом назван лизоцимом.

Лизоцим представляет собой фермент мурамидазу. По сво­ей природе лизоцим является белком, состоящим из 130-150 аминокислотных остатков. Оптимальную активность фермент проявляет при рН = 5,0-7,0 и темпе­ратуре +60С°

Лизоцим содержится во многих секретах человека (слезе, слюне, молоке, кишечной слизи), скелетных мышцах, спинном и головном мозге, в околоплод­ных оболочках и водах плода. В плазме крови его концентрация составляет 8,5±1,4 мкг/л. Основная масса лизоцима в организме синтезируется тканевыми макрофагами и нейтрофилами. Снижение титра лизоцима в сыворотке наблюдается при тяжелых инфекционных заболеваниях, воспалении легких и др.

Лизоцим оказывает следующие биологические эффекты:

1) повышает фагоцитоз нейтрофилов и макрофагов (лизоцим, изменяя по­верхностные свойства микробов, делает их легкодоступными фагоцитозу);

2) стимулирует синтез антител;

3) удаление лизоцима из крови приводит к снижению в сыворотке уровня комплемента, пропердина, В-лизинов;

4) усиливает литическое действие гидролитических ферментов на бакте­рии.

Комплемент. Система комплемента открыта в 1899 г. Ж. Борде. Ком­племент представляет собой комплекс белков сыворотки крови, состоящий бо­лее чем из 20 компонентов. Основные компоненты комплемента обозначаются буквой С и имеют номера от 1 до 9: С1, С2, СЗ, С4, С5, С6, С7.С8.С9. (Табл. 3-2.).

Т а б л и ц а 3-2. Характеристика белков системы комплемента человека.

Обозначение Содержание углеводов, % Молекулярная масса, кД Количество цепей PI Содержание в сыворотке, мг/л
Clq 8,5 10-10,6 6,80
С1r 2 9,4 11,50
C1s 7,1 16,90
С2 + 5,50 8,90
С4 6,9 6,40 8,30
СЗ 1,5 5,70 9,70
С5 1,6 4,10 13,70
С6 10,80
С7 5,60 19,20
С8 6,50 16,00
С9 7,8 4,70 9,60
Фактор D - 7,0; 7,4
Фактор В + 5,7; 6,6
Пропердин Р + >9,5
Фактор Н +
Фактор I 10,7
S-белок, Витронектин + 1(2) . 3,90
ClInh 2,70
C4dp 3,5 540, 590 6-8
DAF
C8bp
CR1 +
CR2 +
CR3 +
С3а - 70*
С4а - 22*
С5а 4,9*
Карбокси-пеп-тидаза М (ин-активатор анафила-токсинов)
Clq-I
M-Clq-I 1-2
Протектин (CD 59) + 1,8-20

* - в условиях полной активации

Продуцируются компоненты комплемента в печени, костном мозге, селе­зёнке. Основными клетками продуцентами комплемента являются макрофаги. С1-компонент продуцируется эпителиоцитами кишечника.

Компоненты комплемента представлены в виде: проферментов (эстераз, протеиназ), белковых молекул, не обладающих ферментативной активностью, и в виде ингибиторов системы комплемента. В обычных условиях компоненты комплемента находятся в неактивной форме. Факторами, активирующими систему комплемента, являются ком­плексы антиген-антитело, агрегированные иммуноглобулины, вирусы, бакте­рии.

Активация системы комплемента приводит к активации литических ферментов комплемента C5-C9, – так называемого мембрано-атакующего комплекса (МАК), который, встраиваясь в мембрану животных и микробных клеток, фор­мирует трансмембранную пору, что приводит к гипергидратации клетки и её гибели. (Рис. 3-2, 3-3).


Р и с. 3-2. Графическая модель активации комплемента.

Р и с. 3-3. Структура активированного комплемента.

Существует 3 пути активации системы комплемента:

Первый путь - классический. (Рис. 3-4).

Р и с. 3-4. Механизм классического пути активации комплемента.

Е – эритроцит или другая клетка. А – антитело.

При этом способе активация литических ферментов МАК С5-С9 осущест­вляется через каскадную активацию C1q, C1r, С1s, С4, С2, с последующим во­влечением в процесс центральных компонентов СЗ-С5 (Рис.3-2, 3-4). Основным ак­тиватором комплемента по классическому пути являются комплексы антиген-антитело, образованные иммуноглобулинами классов G или М.

Второй путь – обводной, альтернативный (Рис. 3-6).

Р и с. 3-6. Механизм альтернативного пути активации комплемента.

Этот механизм активации комплемента запускается вирусами, бактериями, агрегированными иммуноглобулинами, протеолитическими ферментами.

При этом способе активация литических ферментов МАК С5-С9 начина­ется с активации СЗ компонента. В этом механизме активации комплемента не участвуют первые три компонента комплемента С1, С4, С2, но в активации СЗ дополнительно участвуют факторы В и Д.

Третий путь представляет собой неспецифическую активацию системы комплемента протеиназами. Такими активаторами могут служить: трипсин, плазмин, калликреин, лизосомные протеазы и бактериальные ферменты. Акти­вация системы комплемента при этом способе может происходить на любом от­резке от С 1 до С5.

Активация системы комплемента способна вызывать следующие биоло­гические эффекты:

1) лизис микробных и соматических клеток;

2) содействие отторжению трансплантата;

3) высвобождение из клеток биологически активных веществ;

4) усиление фагоцитоза;

5) агрегацию тромбоцитов, эозинофилов;

6) усиление лейкотаксиса, миграцию нейтрофилов из костного мозга и высвобождение из них гидролитических ферментов;

7) через выделение биологически активных веществ и увеличение прони­цаемости сосудов содействие развитию воспалительной реакции;

8) содействие индукции иммунного ответа;

9) активация свёртывающей системы крови.

Р и с. 3-7. Схема классического и альтернативного путей активации комплемента.

Врожденный дефицит компонентов комплемента снижает устойчивость организма к инфекционным и аутоиммунным заболеваниям.

Пропердин. В 1954г. Пиллимер впервые обнаружил в крови особый вид белков, способных активировать комплемент. Этот белок получил название пропердин.

Пропердин относится к классу гамма-иммуноглобулинов, имеет м.м. 180 000 дальтон. В сыворотке здоровых людей он находится в неактивной форме. Активация пропердина происходит после соединения его с фактором В на поверхности клеток.

Активированный пропердин способствует:

1) активации комплемента;

2) освобождению гистамина из клеток;

3) продукции хемотаксических факторов, привлекающих фагоциты к месту воспаления;

4) процессу коагуляции крови;

5) формированию воспалительной реакции.

Фактор В. Представляет собой белок крови глобулиновой природы.

Фактор Д . Протеиназы, имеющие м.м. 23 000. В кро­ви представлены активной формой.

Факторы В и Д участвуют в активации комплемента по альтернативному пути.

В-лизины. Белки крови различной молекулярной массы, обладающие бактерицидными свойствами. Бактерицидное действие В-лизины проявляют как в присутствии, так и в отсутствие комплемента и анти­тел.

Интерферон. Комплекс молекул белко­вой природы, способных предотвращать и подавлять развитие вирусной инфек­ции.

Существует 3 типа интерферона:

1) альфа-интерферон (лейкоцитарный), продуцируется лейкоцитами, представлен 25 подтипами;

2) бета-интерферон (фибробластный), продуцируется фибробластами, представлен 2 подтипами;

3) гамма-интерферон (иммунный), продуцируется, главным образом, лимфоцитами. Гамма-интерферон известен как один тип.

Образование интерферона происходит спонтанно, а также под влиянием вирусов.

Все типы и подтипы интерферонов имеют единый механизм антивирусно­го действия. Он представляется следующим: ин­терферон, связываясь со специфическими рецепторами незараженных клеток, вызывает в них биохимические и генетические изменения, приводящие к снижению трансляции м-РНК в клетках и активации латентных эндонуклеаз, кото­рые, переходя в активную форму, способны вызывать деградацию м-РНК как вируса, так и самой клетки. Это приводит к тому, что клетки становятся нечув­ствительными к вирусной инфекции, создавая барьер вокруг очага инфекции.

Помимо фагоцитов, в крови находятся растворимые неспецифические вещества, губительно действующие на микроорганизмы. К ним относятся комплемент, пропердин, β-лизины, х-лизины, эритрин, лейкины, плакины, лизоцим и др.

Комплемент (от лат. complementum - дополнение) представляет собой сложную систему белковых фракций крови, обладающую способностью лизировать микроорганизмы и другие чужеродные клетки, например эритроциты. Различают несколько компонентов комплемента: С 1 , С 2 , С 3 и т. д. Комплемент разрушается при температуре 55° С в течение 30 мин. Это свойство называется термолабильностью. Он разрушается также при встряхивании, под влиянием УФ-лучей и т. п. Помимо сыворотки крови, комплемент обнаружен в различных жидкостях организма и в воспалительном экссудате, но отсутствует в передней камере глаза и спинномозговой жидкости.

Пропердин (от лат. properde - подготовлять) - группа компонентов нормальной сыворотки крови, активирующая комплемент в присутствии ионов магния. Он сходен с ферментами и играет важную роль в устойчивости организма к инфекции. Снижение уровня пропердина в сыворотке крови свидетельствует о недостаточной активности иммунных процессов.

β-лизины - термостабильные (устойчивые к действию температуры) вещества сыворотки крови человека, обладающие антимикробным действием, в основном по отношению к грамположительным бактериям. Разрушаются при 63° С и под действием УФ-лучей.

Х-лизин - термостабильное вещество, выделенное из крови больных с высокой температурой. Обладает способностью без участия комплемента лизировать бактерии, главным образом грамотрицательные. Выдерживает нагревание до 70-100° С.

Эритрин выделен из эритроцитов животных. Оказывает бактериостатическое действие на возбудителей дифтерии и некоторые другие микроорганизмы.

Лейкины - бактерицидные вещества, выделенные из лейкоцитов. Термостабильны, разрушаются при 75-80° С. Обнаруживаются в крови в очень небольших количествах.

Плакины - сходные с лейкинами вещества, выделенные из тромбоцитов.

Лизоцим - фермент, разрушающий оболочку микробных клеток. Он содержится в слезах, слюне, жидкостях крови. Быстрое заживление ран конъюнктивы глаза, слизистых оболочек полости рта, носа объясняется в значительной степени наличием лизоцима.

Бактерицидными свойствами обладают также составные компоненты мочи, простатическая жидкость, экстракты различных тканей. В нормальной сыворотке содержится в небольшом количестве интерферон.

Контрольные вопросы

1. Что такое гуморальные факторы неспецифической защиты?

2. Какие гуморальные факторы неспецифической защиты Вы знаете?

Специфические факторы защиты организма (иммунитет)

Перечисленные выше компоненты не исчерпывают всего арсенала факторов гуморальной защиты. Главными среди них являются специфические антитела - иммуноглобулины, образующиеся при введении в организм чужеродных агентов - антигенов.

Антигены

Антигены - генетически чужеродные для организма вещества (белки, нуклеопротеиды, полисахариды и др.), на введение которых организм отвечает развитием специфических иммунологических реакций. Одна из таких реакций - образование антител.

Антигены обладают двумя основными свойствами: 1) иммуногенностью, т. е. способностью вызывать образование антител и иммунных лимфоцитов; 2) способностью вступать с антителами и иммунными (сенсибилизированными) лифоцитами в специфическое взаимодействие, которое проявляется в виде иммунологических реакций (нейтрализации, агглютинации, лизиса и др.). Антигены, обладающие обоими признаками, называются полноценными. К ним относятся чужеродные белки, сыворотки, клеточные элементы, токсины, бактерии, вирусы.

Вещества, не вызывающие иммунологических реакций, в частности выработку антител, но вступающие в специфическое взаимодействие с готовыми антителами, получили название гаптенов - неполноценных антигенов. Гаптены приобретают свойства полноценных антигенов после соединения с крупномолекулярными веществами - белками, полисахаридами.

Условиями, определяющими антигенные свойства различных веществ, являются: чужеродность, макромолекулярность, коллоидное состояние, растворимость. Проявляется антигенность при попадании вещества во внутреннюю среду организма, где происходит встреча его с клетками иммунной системы.

Специфичность антигенов, способность их соединяться только с соответствующим антителом - уникальное биологическое явление. Оно лежит в основе механизма сохранения постоянства внутренней среды организма. Это постоянство обеспечивает иммунная система, распознающая и уничтожающая генетически чужеродные вещества (в том числе и микроорганизмы, их яды), находящиеся в его внутренней среде. Иммунная система человека несет постоянный иммунологический надзор. Она способна распознавать чужеродность при отличии клетки всего по одному гену (раковые).

Специфичность - особенность строения веществ, по которой антигены отличаются друг от друга. Она определяется антигенной детерминантой, т. е. небольшим участком молекулы антигена, который и соединяется с антителом. Число таких участков (группировок) у разных антигенов различно и определяет число молекул антител, с которыми может соединяться антиген (валентность).

Способность антигенов соединяться только с теми антителами, которые возникли в ответ на активацию иммунной системы данным антигеном (специфичность), используется в практике: 1) диагностика инфекционных болезней (определение специфических антигенов возбудителя или специфических антител в сыворотке крови больного); 2) профилактика и лечение больных инфекционными болезнями (создание невосприимчивости к определенным микробам или токсинам, специфическая нейтрализация ядов возбудителей ряда болезней при иммунотерапии).

Иммунная система четко дифференцирует "свои" и "чужие" антигены, реагируя только на последние. Однако возможны реакции на собственные антигены организма - аутоантигены и возникновение против них антител - аутоантител. Аутоантигенами становятся "забарьерные" антигены - клетки, вещества, которые в течение жизни идивидуума не контактируют с иммунной системой (хрусталик глаза, сперматозоиды, щитовидная железа и др.), а приходят в соприкосновение с ней при различных повреждениях, всасываясь обычно в кровь. А поскольку при развитии организма эти антигены не распознавались как "свои", то не сформировалась естественная толерантность (специфическая иммунологическая безответность), т. е. в организме остались клетки иммунной системы, способные к иммунному ответу на эти собственные антигены.

В результате появления аутоантител могут развиться аутоиммунные заболевания как следствие: 1) прямого цитотоксического действия аутоантител на клетки соответствующих органов (например, зоб Хасимото - повреждение щитовидной железы); 2) опосредованного действия комплексов аутоантиген - аутоантитело, которые откладываются в поражаемом органе и вызывают его повреждение (например, системная красная волчанка, ревматоидный артрит).

Антигены микроорганизмов . Микробная клетка содержит большое число антигенов, имеющих разное расположение в клетке и разное значение для развития инфекционного процесса. У разных групп микроорганизмов антигены имеют различный состав. У кишечных бактерий хорошо изучены О-, К-, Н-антигены.

О-антиген связан с клеточной стенкой микробной клетки. Его обычно называли "соматическим", так как считали, что этот антиген заключен в теле (соме) клетки. О-антиген грамотрицательных бактерий - сложный липополисахаридно-протеиновый комплекс (эндотоксин). Он термостабилен, не разрушается при обработке спиртом и формалином. Состоит из основного ядра (core) и боковых полисахаридных цепей. Специфичность О-антигенов зависит от строения и состава этих цепей.

К-антигены (капсульные) связаны с капсулой и клеточной стенкой микробной клетки. Их называют также оболочечными. К-антигены расположены более поверхностно, чем О-антигены. Они являются главным образом кислыми полисахаридами. Имеется несколько видов К-антигенов: А, В, L и др. Эти антигены отличаются друг от друга по устойчивости к температурным воздействиям. А-антиген наиболее устойчив, L - наименее. К поверхностным антигенам относят и Vi-антиген, который имеется у возбудителей брюшного тифа и некоторых других кишечных бактерий. Он разрушается при 60° С. Наличие Vi-антигена связывали с вирулентностью микроорганизмов.

Н-антигены (жгутиковые) локализуются в жгутиках бактерий. Они представляют собой особый белок - флагеллин. Разрушаются при нагревании. При обработке формалином сохраняют свои свойства (см. рис. 70).

Протективный антиген (защитный) (от лат. protectio - покровительство, защита) образуется возбудителями в организме больного. Возбудители сибирской язвы, чумы, бруцеллеза способны образовывать протективный антиген. Его обнаруживают в экссудатах пораженных тканей.

Выявление антигенов в патологическом материале является одним из способов лабораторной диагностики инфекционных болезней. Для выявления антигена применяют различные иммунные реакции (см. ниже).

При развитии, росте и размножении микроорганизмов их антигены могут меняться. Происходит утрата некоторых антигенных компонентов, более поверхностно расположенных. Это явление носит название диссоциации. Примером ее может служить "S" - "R"-диссоциация.

Контрольные вопросы

1. Что такое антигены?

2. Каковы основные свойства антигенов?

3. Какие антигены микробной клетки Вы знаете?

Антитела

Антитела - это специфические белки крови - иммуноглобулины, образующиеся в ответ на введение антигена и способные специфически реагировать с ним.

В сыворотке человека имеется два вида белков: альбумины и глобулины. Антитела связаны в основном с глобулинами, измененными под воздействием антигена и названными иммуноглобулинами (Ig). Глобулины неоднородны. По скорости движения в геле при пропускании через него электрического тока их делят на три фракции: α, β, γ. Антитела принадлежат главным образом к γ-глобулинам. Эта фракция глобулинов имеет наибольшую скорость движения в электрическом поле.

Иммуноглобулины характеризуют по молекулярной массе, скорости осаждения при ультрацентрифугировании (центрифугировании с очень большой скоростью) и т. п. Различия этих свойств позволили разделить иммуноглобулины на 5 классов: IgG, IgM, IgA, IgE, IgD. Все они играют роль в развитии иммунитета против инфекционных заболеваний.

Иммуноглобулины G (IgG) составляют около 75% всех иммуноглобулинов человека. Они наиболее активны в развитии иммунитета. Единственные из иммуноглобулинов проникают через плаценту, обеспечивая пассивный иммунитет плода. Имеют небольшую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины М (IgM) образуются в организме плода и первыми появляются после заражения или иммунизации. К этому классу принадлежат "нормальные" антитела человека, которые образуются в течение его жизни, без видимого проявления инфекции или при бытовом многократном инфицировании. Имеют большую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины A (IgA) обладают способностью проникать в секреты слизистых (молозиво, слюна, содержимое бронхов и др.). Они играют роль в защите слизистых оболочек дыхательного и пищеварительного трактов от микроорганизмов. По величине молекулярной массы и скорости осаждения при ультрацентрифугировании близки к IgG.

Иммуноглобулины Е (IgE) или реагины несут ответственность за аллергические реакции (см. главу 13). Играют роль в развитии местного иммунитета.

Иммуноглобулины D (IgD). Обнаружены в небольшом количестве в сыворотке крови. Изучены недостаточно.

Структура иммуноглобулинов . Молекулы иммуноглобулинов всех классов построены одинаково. Наиболее простая структура у молекул IgG: две пары полипептидных цепей, соединенных дисульфидной связью (рис. 31). Каждая пара состоит из легкой и тяжелой цепи, различающихся по молекулярной массе. Каждая цепь имеет постоянные участки, которые предопределены генетически, и переменные, образующиеся под воздействием антигена. Это специфические участки антитела называют активными центрами. Они вступают во взаимодействие с антигеном, который вызвал образование антител. Количество активных центров в молекуле антитела определяет валентность - число молекул антигена, с которым может связаться антитело. IgG и IgA - двухвалентны, IgM - пятивалентны.


Рис. 31. Схематическое изображение иммуноглобулинов

Иммуногенез - антителообразование зависит от дозы, кратности и способа введения антигена. Различают две фазы первичного иммунного ответа на антиген: индуктивную - от момента введения антигена до появления антителообразующих клеток (до 20 ч) и продуктивную, которая начинается к концу первых суток после введения антигена и характеризуется появлением антител в сыворотке крови. Количество антител постепенно увеличивается (к 4-му дню), достигая максимума на 7-10-й день и уменьшается к концу первого месяца.

Вторичный иммунный ответ развивается при повторном введении антигена. При этом индуктивная фаза значительно короче - антитела вырабатываются быстрее и интенсивнее.

Контрольные вопросы

1. Что такое антитела?

2. Какие Вы знаете классы иммуноглобулинов?


Похожая информация.


1. «Комплемент » - комплекс белковых молекул в крови, которые разрушают клетки или помечают их для уничтожения(от лат. Complementum-дополнение). В крови циркулируют различные фракции (частички) комплемента, обозначаемые символами С1,С2,С3…С9 и др. Находясь в разобщенном состоянии, они являются инертными белками-предшественниками комплемента. Сборка фракций комплемента в единое целое происходит при внедрении в организм болезнетворных микробов. Сформировавшись, комплемент выглядит в виде воронки и способен лизировать (уничтожать) бактерии или помечать их для уничтожения фагоцитами.

У здоровых людей уровень комплемента варьирует незначительно, но у больных может резко повышаться или снижаться.

2. Цитокины - небольшие пептидные информационные молекулы интерлейкины и интерфероны . Они регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз (естественная гибель клеток организма). Обеспечивают согласованность действия иммунной, эндокринной и нервной систем в нормальных условиях и при патологии.

Цитокин выделяется на поверхность клетки (в которой находился) и взаимодействуют с рецептором рядом находящейся другой клетки. Таким образом, передается сигнал, для запуска дальнейших реакции.

а) Интерлейки́ны (ИНЛ или IL) - группа цитокинов, синтезируемая в основном лейкоцитами (по этой причине было выбрано окончание «-лейкин»). Также производятся моноцитами и макрофагами. Существуют разные классы интерлейкинов от 1 до 11 и др.

б) Интерфероны (ИНФ) Это низкомолекулярные белки, содержащие небольшое количество углеводов (от анг.interfere-препятствую размножению). Различают 3 серологические группы α, β и γ. α – ИНФ - это семейство 20 полипептидов продуцируется лейкоцитами, β- ИНФ - гликопротеин, продуцируются фибробластами. γ – ИНФ продуцируется Т-лимфоцитами. Отличаясь по структуре, они обладают одинаковым механизмом действия. Под воздействием инфекционного начала секретируются многими клетками в месте входных ворот инфекции концентрация ИНФ в считанные часы многократно увеличивается. Его защитное действие в отношении вирусов сводится к ингибированию репликации РНК или ДНК. Связавшийся со здоровыми клетками ИНФ I типа защищает их от проникновения вирусов.

3. Опсонины это белки острой фазы. Усиливают фагоцитарную активность, оседают на фагоцитах и облегчают их связывание с а/г, покрытых иммуноглобулином (IgG и IgA) или комплементом.

Иммуногенез

Антителообразование называется иммуногенез и зависит от дозы, кратности и способа введения а/г.

Клетки, обеспечивающие иммунный ответ называются иммунокомпетентными, ведут начало от кроветворной стволовой клетки , которые образуются в красном костном мозге. Там же формируются лейкоциты, тромбоциты и эритроциты, а также предшественники Т и В – лимфоцитов.

На ряду с выше перечисленными клетками предшественники Т- и В- лимфоциты являются клетками иммунной системы. Для созревания Т – лимфоциты направляются в тимус.

В – лимфоциты начальное созревание проходят в красном костном мозге, а завершают созревание в лимфатических сосудах и узлах. В – лимфоциты произошло от слова “бурса” – сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В – лимфоцитами человека. У человека органа образующего В – лимфоциты не найдено. Т и В – лимфоциты покрыты ворсинками (рецепторами).

Хранение Т – и В – лимфоцитов осуществляется в селезенке. Весь этот процесс происходит без внедрения антигена. Обновление всех клеток крови и лимфы происходит постоянно.

Процесс формирования Jg может быть продолжен, если происходит проникновение а/г в организм.

В ответ на внедрение а/г реагируют макрофаги. Они определяют чужеродность а/г, затем фагоцитируют и если макрофаги не справились, образованный комплекс гистосовместимости (MHC) (а\г+макрофаг), данный комплекс выделяет вещество интерлейкин I (ИНЛ I) порядка, это вещество действует на Т – лимфоциты, которые дифференцируются на 3 разновидности Тk (киллеры), Th (Т-хелперы), Ts (Т-супрессоры).

Th выделяют ИНЛ II порядка, который действует на преобразование В – лимфоцитов и активацию Тk. После такой активации В - лимфоциты трансформируются в плазматические клетки, из которых в конечном итоге получаются Jg (М,D,G,А,Е,).

Процесс выработки Jg происходит, если человек заболевает впервые.

Если происходит повторное заражение этим же видом микроба, схема выработки Jg сокращается. В этом случае оставшиеся, на В – лимфоцитах JgG соединяются сразу же с а/г и трансформируются в плазматические клетки. Т – система остается, не задействована. Одновременно с активацией В – лимфоцитов при повторном заражении активизируется мощная система сборки комплемента.

Тk обладают противовирусной защитой. Ответственны за клеточный иммунитет: разрушают опухолевые клетки, трансплантированные клетки, мутировавшие клетки собственного организма, учавствуют ГЗТ. В отличие от NK-клеток, T-киллеры специфически распознают определённый антиген и убивают только клетки с этим антигеном.

NK -клетки. Естественные киллеры , натуральные киллеры (англ. Natural killer cells (NK cells) ) - большие гранулярные лимфоциты, обладающие цитотоксичностью против опухолевых клеток и клеток, зараженных вирусами. NK-клетки рассматривают как отдельный класс лимфоцитов. NK являются одним из важнейших компонентов клеточного врождённого иммунитета, осуществляют неспецифическую защиту. Они не имеют Т-клеточных рецепторов, CD3 или поверхностных иммуноглобулинов.

Ts - Т-супрессоры (англ. regulatory T cells, suppressor T cells, Treg ) или регуляторные Т- лимфоциты. Основная их функция - контролировать силу и продолжительность иммунного ответа через регуляцию функции Т-хелперов и Тk. При завершении инфекционного процесса нужно прекратить преобразование В – лимфоцитов в плазматические клетки, Ts подавляют (инактивируют) выработку В – лимфоцитов.

Специфические и неспецифические факторы иммунной защиты всегда действуют одномоментно.

Рисунок схемы выработки иммуноглобулинов

Антитела

Антитела (а\т) - это специфические белки крови, другое название иммуноглобулины, образующиеся в ответе на внедрение а/г.

А/т связанные с глобулинами, и измененные под действием, а\г называются иммуноглобулинами (J g) их делят на 5 классов: JgА, JgG, JgМ, JgЕ, JgД. Все они нужны для ответной реакции иммунитета.JgG имеет 4 подкласса JgG 1-4. .Данный иммуноглобулин составляет 75% от всех иммуноглобулинов. Его молекула самая маленькая, поэтому проникает через плаценту матери, и обеспечивает естественный пассивный иммунитет плода. При первичном заболевании JgG формируется и накапливается. В начале заболевания концентрация его мала, при развитии инфекционного процесса и количество JgG возрастает, при выздоровлении, концентрация снижается и в небольшом количестве остается в организме после перенесенного заболевания, обеспечивая иммунологическую память.

JgМ первыми появляются при заражении и имуннизации. Имеют большую молекулярную массу (самая крупная молекула). Образуется при бытовом многократном инфицировании.

JgА содержится в секретах слизистых дыхательных путей и пищеварительного тракта, а также в молозиве, слюне. Участвуют в противовирусной защите.

JgЕ ответственен за аллергические реакции, участвуют в развитии местного иммунитета.

JgД обнаружен в небольшом количестве в сыворотке крови человека, изучен недостаточно.

Структура Jg

Наиболее простые JgЕ, JgД, JgА

Активные центры связываются с а/г, от количества центров зависит валентность а/т. Jg + G двухвалентны, JgМ – 5ти валентен.

гуморальные факторы - система комплемента. Комплемент - это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген - антитело. С активации комплемента начинается любое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;

Спид

Открытию ВИЧ предшествовали работы Р. Галло и его со­трудников, которые на полученной ими культуре клеток Т-лимфоцитов выделили два Т-лимфотропных ретровируса человека. Один из них - HTLV-I (англ., humen T-lymphotropic virus type I), обнаруженный в конце 70-х годов, является возбудителем редкого, но злокачественного Т-лейкоза человека. Второй вирус, обозначенный HTLV-II, также вызывает Т-клеточные лейкозы и лимфомы.

После регистрации в США в начале 80-х годов первых боль­ных с синдромом приобретенного иммунодефицита (СПИД), тогда еще никому не известного заболевания, Р. Галло высказал предположение, что его возбудителем является ретровирус, близкий к HTLV-I. Хотя это предположение через несколько лет было опровергнуто, оно сыграло большую роль в открытии истинного возбудителя СПИДа. В 1983 г. из кусочка ткани увеличенного лимфатического узла гомосексуалиста Люк Монтенье с группой сотрудников Пастеровского института в Париже выделили в культуре Т-хелперов ретровирус. Дальнейшие иссле­дования показали, что этот вирус отличался от HTLV-I и HTLV-II - он репродуцировался только в клетках Т-хелперов и эффекторов, обозначаемых Т4, и не репродуцировался в клет­ках Т-супрессоров и киллеров, обозначаемых Т8.

Таким образом, введение в вирусологическую практику куль­тур лимфоцитов Т4 и Т8 позволило выделить три облигатно-лимфотропных вируса, два из которых вызывали пролиферацию Т-лимфоцитов, выражающуюся в разных формах лейкоза человека, а один - возбудитель СПИДа - вызывал их деструк­цию. Последний получил название вируса иммунодефицита человека - ВИЧ.

Структура и химический состав. Вирионы ВИЧ имеют сфери­ческую форму 100-120 нм в диаметре и по своей структуре близки к другим лентивирусам. Внешняя оболочка вирионов образована двойным липидным слоем с расположенными на нем гликопротеиновыми «шипами» (рис. 21.4). Каждый «шип» состо­ит из двух субъединиц (gp41 и gp!20). Первый пронизывает липидный слой, второй находится снаружи. Липидный слой происходит из внешней мембраны клетки хозяина. Образование обоих белков (gp41 и gp!20) с нековалентной связью между ними происходит при разрезании белка внешней оболочки ВИЧ (gp!60). Под внешней оболочкой расположена сердцевина вириона цилиндрической или конусовидной формы, образован­ная белками (р!8 и р24). В сердцевине заключены РНК, обрат­ная транскриптаза и внутренние белки (р7 и р9).

В отличие от других ретровирусов ВИЧ имеет сложный геном за счет наличия системы регуляторных генов. Без знания основных механизмов их функционирования невозможно понять уникальные свойства этого вируса, проявляющиеся в разнооб­разных патологических изменениях, которые он вызывает в ор­ганизме человека.

В геноме ВИЧ содержится 9 генов. Три структурных гена gag, pol и env кодируют компоненты вирусных частиц: ген gag - внутренние белки вириона, входящие в состав сердцевины и капсида; ген pol - обратную транскриптазу; ген env - типо-специфические белки, находящиеся в составе внешней оболочки (гликопротеины gp41 и gp!20). Большая молекулярная масса gp!20 обусловлена высокой степенью их гликозирования, что является одной из причин антигенной вариабельности данного вируса.

В отличие от всех известных ретровирусов ВИЧ имеет слож­ную систему регуляции структурных генов (рис. 21.5). Среди них наибольшее внимание привлекают гены tat и rev. Продукт гена tat увеличивает скорость транскрипции как структурных, так и регуляторных вирусных белков в десятки раз. Продукт гена rev также является регулятором транскрипции. Однако он контролирует транскрипцию либо регуляторных, либо структур­ных генов. В результате такого переключения транскрипции вместо регуляторных белков синтезируются капсидные белки, что увеличивает скорость репродукции вируса. Тем самым при участии гена rev может определиться переход от латентной инфекции к ее активной клинической манифестации. Ген nef контролирует прекращение репродукции ВИЧ и его переход в латентное состояние, а ген vif кодирует небольшой белок, усиливающий способность вириона отпочковываться от одной клетки и заражать другую. Однако эта ситуация еще более усложнится, когда окончательно будет выяснен механизм регу­ляции репликации провирусной ДНК продуктами генов vpr и vpu. Вместе с тем на обоих концах ДНК провируса, интегри­рованного в клеточный геном, имеются специфические марке­ры- длинные концевые повторы (ДКП), состоящие из идентич­ных нуклеотидов, которые участвуют в регуляции экспрессии рассмотренных генов. При этом существует определенный алгоритм включения генов в процессе вирусной репродукции в раз­ные фазы заболевания.

Антигены. Антигенными свойствами обладают белки серд­цевины и оболочечные гликопротеины (gp!60). Последние характеризуются высоким уровнем антигенной изменчивости, который определяется высокой скоростью замен нуклеотидов в генах env и gag, в сотни раз превышающей соответствующий показатель для других вирусов. При генетическом анализе многочисленных изолятов ВИЧ не оказалось ни одного с полным совпадением нуклеотидных последовательностей. Более глубокие различия отмечены у штаммов ВИЧ, выделенных от больных, проживающих в различных географических зонах (географиче­ские варианты).

Вместе с тем у вариантов ВИЧ имеются общие антигенные эпитопы. Интенсивная антигенная изменчивость ВИЧ происходит в организме больных в ходе инфекции и вирусоносителей. Она дает возможность вирусу «скрыться» от специфических антител и факторов клеточного иммунитета, что приводит к хронизации инфекции.

Повышенная антигенная изменчивость ВИЧ существенно ограничивает возможности создания вакцины для профилактики СПИДа.

В настоящее время известны два типа возбудителя - ВИЧ-1 и ВИЧ-2, которые различаются между собой по антигенным, патогенным и другим свойствам. Первоначально был выделен ВИЧ-1, который является основным возбудителем СПИДа в Европе и Америке, а через несколько лет в Сенегале - ВИЧ-2, который распространен в основном в Западной и Центральной Африке, хотя отдельные случаи заболевания встречаются и в Европе.

В США с успехом применяется живая аденовирусная вакцина для иммунизации военнослужащих.

Лабораторная диагностика. Для выявления вирусного антиге­на в эпителиальных клетках слизистой оболочки дыхательных путей применяют иммунофлюоресцентный и иммуноферментный методы, а в испражнениях - иммуноэлектронную микроскопию. Выделение аденовирусов проводится путем заражения чувстви­тельных культур клеток с последующей идентификацией вируса в РНК, а затем в реакции нейтрализации и РТГА.

Серодиагностика проводится в тех же реакциях с парными сыворотками больных людей.

Билет 38

Питательные среды

Микробиологическое исследование - это выделение чистых культур микроорганизмов, культивирование и изучение их свойств. Чистыми называются культуры, состоящие из микроорганизмов одного вида. Они нужны при диагностике инфекционных болезней, для определения видовой и типовой принадлежности микробов, в исследовательской работе, для получения продуктов жизнедеятельности микробов (токсинов, антибиотиков, вакцин и т. п.).

Для культивирования микроорганизмов (выращивание в искусственных условиях in vitro) необходимы особые субстраты - питательные среды. На средах микроорганизмы осуществляют все жизненные процессы (питаются, дышат, размножаются и т. д.), поэтому их еще называют «средами для культивирования».

Питательные среды

Питательные среды являются основой микробиологической работы, и их качество нередко определяет результаты всего исследования. Среды должны создавать оптимальные (наилучшие) условия для жизнедеятельности микробов.

Требования, предъявляемые к средам

Среды должны соответствовать следующим условиям:

1) быть питательными, т. е. содержать в легко усвояемом виде все вещества, необходимые для удовлетворения пищевых и энергетических потребностей. Ими являются источники органогенов и минеральных (неорганических) веществ, включая микроэлементы. Минеральные вещества не только входят в структуру клетки и активизируют ферменты, но и определяют физико-химические свойства сред (осмотическое давление, рН и др.). При культивировании ряда микроорганизмов в среды вносят факторы роста - витамины, некоторые аминокислоты, которые клетка не может синтезировать;

Внимание! Микроорганизмы, как все живые существа, нуждаются в большом количестве воды.

2) иметь оптимальную концентрацию водородных ионов - рН, так как только при оптимальной реакции среды, влияющей на проницаемость оболочки, микроорганизмы могут усваивать питательные вещества.

Для большинства патогенных бактерий оптимальна слабощелочная среда (рН 7,2-7,4). Исключение составляют холерный вибрион - его оптимум находится в щелочной зоне

(рН 8,5-9,0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6,2-6,8).

Чтобы во время роста микроорганизмов кислые или щелочные продукты их жизнедеятельности не изменили рН, среды должны обладать буферностью, т. е. содержать вещества, нейтрализующие продукты обмена;

3) быть изотоничными для микробной клетки, т. е. осмотическое давление в среде должно быть таким же, как внутри клетки. Для большинства микроорганизмов оптимальна среда, соответствующая 0,5% раствору натрия хлорида;

4) быть стерильными, так как посторонние микробы препятствуют росту изучаемого микроба, определению его свойств и изменяют свойства среды (состав, рН и др.);

5) плотные среды должны быть влажными и иметь оптимальную для микроорганизмов консистенцию;

6) обладать определенным окислительно-восстановительным потенциалом, т. е. соотношением веществ, отдающих и принимающих электроны, выражаемым индексом RH2. Этот потенциал показывает насыщение среды кислородом. Для одних микроорганизмов нужен высокий потенциал, для других - низкий. Например, анаэробы размножаются при RH2 не выше 5, а аэробы - при RH2 не ниже 10. Окислительно-восстановительный потенциал большинства сред удовлетворяет требованиям к нему аэробов и факультативных анаэробов;

7) быть по возможности унифицированным, т. е. содержать постоянные количества отдельных ингредиентов. Так, среды для культивирования большинства патогенных бактерий должны содержать 0,8-1,2 гл амин-ного азота NH2, т. е. суммарного азота аминогрупп аминокислот и низших полипептидов; 2,5-3,0 гл общего азота N; 0,5% хлоридов в пересчете на натрия хлорид; 1% пептона.

Желательно, чтобы среды были прозрачными - удобнее следить за ростом культур, легче заметить загрязнение среды посторонними микроорганизмами.

Классификация сред

Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

В настоящее время предложено огромное количество сред, в основу классификации которых положены следующие признаки.

1. Исходные компоненты. По исходным компонентам различают натуральные и синтетические среды. Натуральные среды готовят из продуктов животного и

растительного происхождения. В настоящее время разработаны среды, в которых ценные пищевые продукты (мясо и др.) заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови и др. Несмотря на то, что состав питательных сред из натуральных продуктов очень сложен и меняется в зависимости от исходного сырья, эти среды нашли широкое применение.

Синтетические среды готовят из определенных химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворенных в дважды дистиллированной воде. Важное преимущество этих сред в том, что состав их постоянен (известно, сколько и какие вещества в них входят), поэтому эти среды легко воспроизводимы.

2. Консистенция (степень плотности). Среды бывают жидкие, плотные и полужидкие. Плотные и полужидкие среды готовят из жидких веществ, к которым для получения среды нужной консистенции прибавляют обычно агар-агар или желатин.

Агар-агар - полисахарид, получаемый из определенных

сортов морских водорослей. Он не является для микроорганизмов питательным веществом и служит только для уплотнения среды. В воде агар плавится при 80- 100°С, застывает при 40-45°С.

Желатин - белок животного происхождения. При 25- 30°С желатиновые среды плавятся, поэтому культуры на них обычно выращивают при комнатной температуре. Плотность этих сред при рН ниже 6,0 и выше 7,0 уменьшается, и они плохо застывают. Некоторые микроорганизмы используют желатин как питательное вещество - при их росте среда разжижается.

Кроме того, в качестве плотных сред применяют свернутую сыворотку крови, свернутые яйца, картофель, среды с селикагелем.

3. Состав. Среды делят на простые и сложные. К первым относят мясопептонный бульон (МПБ), мясопептонный агар (МПА), бульон и агар Хоттингера, питательный желатин и пептонную воду. Сложные среды готовят, прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества, необходимые для размножения того или иного микроорганизма.

4. Назначение: а) основные (общеупотребительные) среды служат для культивирования большинства патогенных микробов. Это вышеупомянутые МП А, МПБ, бульон и агар Хоттингера, пептонная вода;

б) специальные среды служат для выделения и выращивания микроорганизмов, не растущих на простых средах. Например, для культивирования стрептококка к средам прибавляют сахар, для пневмо- и менингококков - сыворотку крови, для возбудителя коклюша - кровь;

в) элективные (избирательные) среды служат для выделения определенного вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Так, соли желчных кислот, подавляя рост кишечной палочки, делают среду

элективной для возбудителя брюшного тифа. Среды становятся элективными при добавлении к ним определенных антибиотиков, солей, изменении рН.

Жидкие элективные среды называют средами накопления. Примером такой среды служит пептонная вода с рН 8,0. При таком рН на ней активно размножается холерный вибрион, а другие микроорганизмы не растут;

г) дифференциально-диагностические среды позволяют отличить (дифференцировать) один вид микробов от другого по ферментативной активности, например среды Гисса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды;

д) консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала; в них предотвращается отмирание патогенных микроорганизмов и подавляется развитие сапрофитов. Пример такой среды - глицериновая смесь, используемая для сбора испражнений при исследованиях, проводимых с целью обнаружения ряда кишечных бактерий.

Гепатит (А,Е)

Возбудитель гепатита A (HAV-Hepatitis A virus) относится к семейству пикорнавирусов, роду энтеровирусов. Вызыва­ет наиболее распространенный вирусный гепатит, который имеет несколько исторических названий (инфекционный, эпидемический гепатит, болезнь Боткина и др.). В нашей стране около 70 % случаев вирусного гепатита вызывается вирусом гепатита А. Вирус впервые был обнаружен С. Фейстоуном в 1979 г. в фекалиях боль­ных методом иммунной электронной микроскопии.

Структура и химический состав. По морфологии и структуре вирус гепатита А близок ко всем энтеровирусам (см. 21.1.1.1). В РНК вируса гепатита А обнаружены нуклеотидные после­довательности, общие с другими энтеровирусами.

Вирус гепатита А имеет один вирусспецифический антиген белковой природы. HAV отличается от энтеровирусов более высокой устойчивостью к действию физических и химических факторов. Он частично инактивируется при нагревании до 60°С в течение 1 ч, при 100 °С разрушается в течение 5 мин, чувст­вителен к действию.формалина и УФ-излучению.

Культивирование и репродукция. Вирус гепатита обладает пониженной способностью к репродукции в культурах клеток. Однако его удалось адаптировать к перевиваемым линиям кле­ток человека и обезьян. Репродукция вируса в культуре кле­ток не сопровождается ЦПД. HAV почти не выявляется в куль-туральной жидкости, поскольку ассоциирован с клетками, в ци­топлазме которых он репродуцируется:

Патогенез заболеваний человека и иммунитет. HAV так же, как и другие энтеровирусы, с пищей попадает в желудочно-кишечный тракт, где репродуцируется в эпителиальных клетках слизистой оболочки тонкой кишки и регионарных лимфатичес­ких узлах. Затем возбудитель проникает в кровь, в которой он обнаруживается в конце инкубационного периода и в первые дни заболевания.

В отличие от других энтеровирусов основной мишенью по­ражающего действия HAV являются клетки печени, в цитоплазме которых происходит его репродукция. Не исключена возможность поражения гепатоцитов NK-клетками (натуральными киллера­ми), которые в активированном состоянии могут взаимодейство­вать с ними, вызывая их разрушение. Активация NK-клеток происходит и в результате их взаимодействия с интерфероном, индуцированным вирусом. Поражение гепатоцитов сопровожда­ется развитием желтухи и повышением уровня трансаминаз в сыворотке крови. Далее возбудитель с желчью попадает в про­свет кишечника и выделяется с фекалиями, в которых отме­чается высокая концентрация вируса в конце инкубационного периода и в первые дни заболевания (до развития желтухи). Гепатит А обычно заканчивается полным выздоровлением, ле­тальные исходы редки.

После перенесения клинически выраженной или бессимптом­ной инфекции формируется пожизненный гуморальный иммуни­тет, связанный с синтезом противовирусных антител. Иммуно­глобулины класса IgM исчезают из сыворотки через 3-4 мес после начала заболевания, в то время как IgG сохраняются в течение многих лет. Установлен также синтез секреторных им­муноглобулинов SlgA.

Эпидемиология. Источником инфекции являются больные люди, в том числе и с распространенной бессимптомной фор­мой инфекции. Вирус гепатита А широко циркулирует среди на­селения. На Европейском континенте сывороточные антитела против HAV содержатся у 80 % взрослого населения, достигше­го 40-летнего возраста. В странах с низким социально-экономи­ческим уровнем инфицирование происходит уже в первые годы жизни. Гепатитом А часто болеют дети.

Больной наиболее опасен для окружающих в конце инкуба­ционного периода и в первые дни разгара болезни (до появле­ния желтухи) в связи с максимальным выделением вируса с фекалиями. Основной механизм передачи - фекально-ораль-ный - через пищу, воду, предметы обихода, детские игрушки.

Лабораторная диагностика проводится путем выявления ви­руса в фекалиях больного методом иммуноэлектронной микро-скопии. Вирусный антиген в фекалиях может Оыть также обна^ ружен с помощью иммуноферментного и радиоиммунного ана­лиза. Наиболее широко применяется серодиагностика гепатита - выявление теми же методами в парных сыворотках крови анти­тел класса IgM, которые достигают высокого титра в течение пер­вых 3-6 нед.

Специфическая профилактика. Вакцинопрофилактика гепа­тита А находится в стадии разработки. Испытываются инактивированная и живая культуральные вакцины, производство которых затруднено в связи со слабой репродукцией вируса в культурах клеток. Наиболее перспективной является разработка генно-инженерной вакцины. Для пассивной иммунопрофилактики гепатита А используют иммуноглобулин, полученный из смеси донорских сывороток.

Возбудитель гепатита Е имеет некоторое сходство с кали-цивирусами. Размер вирусной частицы 32-34 нм. Генетичес­кий материал представлен РНК. Передача вируса гепатита Е, так же как HAV, происходит энтеральным путем. Серодиагно­стика проводится путем определения антител к антигену Е-вируса.

К гуморальным факторам, обеспечивающим резистентность организма, относят комплимент, лизоцим, интерферон, пропердин, С-реактивный белок, нормальные антитела, бактерицидин.

Комплемент – сложная многофункциональная система белков сыворотки крови, которая участвует в таких реакциях, как опсонизация, стимуляция фагоцитоза, цитолиз, нейтрализация вирусов, индукция иммунного ответа. Известно 9 фракций комплемента, обозначаемых С 1 – С 9 , находящихся в сыворотке крови в неактивном состоянии. Активизация комплемента происходит под действием комплекса антиген-антитела и начинается с присоединения к этому комплексу С 1 1 . Для этого необходимо присутствие солей Са и Мq. Бактерицидная активность комплемента проявляется с самых ранних этапов жизни плода, однако, в период новорожденности активность комплемента наиболее низкая по сравнению с другими возрастными периодами.

Лизоцим – представляет собой фермент из группы гликозидаз. Впервые лизоцим описан Флетингом в 1922 году. Он секретируется постоянно, выявляется во всех органах и тканях. В организме животных лизоцим находится в крови, слезной жидкости, слюне, секрете слизистых оболочек носа, в желудочном и дуоденальном соке, молоке, амниотической жидкости плодов. Особенно богаты лизоцимом лейкоциты. Способность лизоцима лизировать микроорганизмы чрезвычайно велика. Он не теряет этого свойства даже в разведении 1: 1 000 000. Первоначально считалось, что лизоцим активен лишь в отношении грамположительных микроорганизмов, однако в настоящее время установлено, что в отношении грамотрицательных бактерий он действует совместно с комплементом цитолитически, проникая через поврежденную им клеточную стенку бактерий к объектам гидролиза.

Пропердин (от лат. perdere – разрушать) белок сыворотки крови глобулинового типа, обладающий бактерицидными свойствами. В присутствии комплимента и ионов магния проявляет бактерицидное действие в отношении граммположительных и граммотрицательных микроорганизмов, а также способен инактивировать вирусы гриппа, герпеса, проявляет бактерицидность по отношению ко многим патогенным и условно-патогенным микроорганизмам. Уровень пропердина в крови животных отражает состояние их резистентности, чувствительность к инфекционным заболеваниям. Выявлено снижение его содержания у облученных животных, больных туберкулезом, при стрептококковой инфекции.

С-реактивный белок – подобно иммуноглобулинам, обладает способностью инициировать реакции преципитации, агглютинации, фагоцитоза, связывание комплемента. Кроме того С-реактивный белок повышает подвижность лейкоцитов, что дает основание говорить об его участии в формировании неспецефической устойчивости организма.

С-реактивный белок находят в сыворотке крови при острых воспалительных процессах, и он может служить показателями активности этих процессов. В нормальной сыворотке крови этот белок не определяется. Он не проходит через плаценту.

Нормальные антитела присутствуют в сыворотке крови практически всегда и принимают постоянное участие в неспецифической защите. Образуются в организме как нормальный компонент сыворотки в результате контакта животного с очень большим количеством различных микроорганизмов окружающей среды или некоторых белков рациона.

Бактерицидин представляет собой фермент, который в отличие от лизоцима действует на внутриклеточные субстанции.